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Abstract

Machine learning models are predominantly data-driven and often lack embedded domain

knowledge. This limitation is particularly significant in the field of finance, where certain as-

set conditions must be maintained. To address this, we propose a novel constrained Gaussian

Process model (consGP) that simultaneously minimises interpolation loss and satisfies encoded

linear inequalities representing economic constraints. This approach enables the consGP to

learn from market data whilst adhering to fundamental economic principles. We apply this

model to the estimation of option-implied risk metrics, where the consGP demonstrates robust

performance in estimating risk-neutral density (RND) across sparse and noisy option observa-

tions. This model has been demonstrated to be particularly suitable for modeling stock options

with limited sample sizes due to insufficient liquidity. Our comprehensive empirical studies,

conducted using a cross-section of S&P 500 stocks, reveal that the consGP model outperforms

traditional structural models in recovering stock-level RND. This improved performance trans-

lates into enhanced predictive information and tangible economic benefits for investors. The

consGP model thus represents a significant advancement in integrating machine learning tech-

niques with domain-specific financial constraints, offering a more robust and economics-aware

approach to option pricing and risk assessment.

Keywords: Risk-neutral density; Gaussian process; Option-implied risk metrics

JEL code: C63, F47

1



1 Introduction

Machine learning models, whilst containing robust function-fitting capabilities and adaptability,

are fundamentally data-driven. These models lack inherent understanding of the domain-specific

knowledge underpinning the data, potentially leading to paradoxical or inconsistent predictions.

This limitation is particularly significant in the financial industry, where certain axioms must be

upheld, such as the non-negativity of asset prices. Over the past couple of years, a key challenge in

finance has been the development of models that can effectively learn information from data with the

“awareness” of the pertinent domain knowledge. The seminal work of Chen et al. (2023) establishes

a comprehensive framework of “transfer learning”, facilitating the transition from theoretical to

market data. In this paper, we investigate this topic from the perspective of a small sample of daily

data, which is particularly important in risk metrics estimation. To maintain adequate sensitivity

to the most recent market information, risk metrics are often estimated by the historical data in a

short time period. Consequently, it remains a challenge to learn meaningful insights from a limited

data sample over a short time period, while aware of the domain-specific knowledge. This challenge

is particularly acute for transfer learning frameworks that typically rely on substantial volumes of

data.

In this paper, we introduce a novel Gaussian Process model that integrates established economic

theories as constraints. Our approach commences with the training of a standard Gaussian Process

(GP) model using market data. Owing to their ability to incorporate prior knowledge through

kernel functions and provide a measure of uncertainty in predictions, GPs are often well-suited

for small sample sizes. We then encode the economic constraints as a set of linear inequalities.

To constrain the GP effectively, we simultaneously solve two conditions: firstly, the interpolation

condition for minimising loss, and secondly, the inequality conditions that enforce the constraints.

By interpolating the observed data whilst being “aware” of these constraints, the model is able to

avoid overfitting to noisy data and generate predictions that are “aware” of economic principles.

By virtue of this, our model can be applied to a wide range of small sample learning topics in

finance and economics. In this paper, we demonstrate its application to the topic of option-implied

risk metrics, which we have selected for two reasons. Firstly, learning the embedded information for

ad-hoc risk measurement constitutes a complex economic problem, typically reliant on a relatively

small dataset (usually option data from a single trading day). To accurately compute risk metrics,

one must first extract the risk-neutral density (RND) of the underlying returns from the learned
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option prices, a process in which even minor deviations can result in significantly distorted RNDs

and, by extension, risk metrics. Secondly, the field of option-implied risk has a substantial body

of well-established research that can serve as a benchmark for our model, enabling a rigorous

evaluation of its performance.

Sepcifically, option prices encode investor expectations and risk preferences for the underlying

asset returns, which is vital for the estimation of risk metrics in ex-ante. To decode this predictive

information, one could use the model-free calculations of implied risk metrics directly with traded

options, for example the implied moments including the implied volatility, skewness and kurtosis

as proposed in Bakshi et al. (2003) (henceforth BKM), and the implied tail risk measures including

the implied Value-at-Risk (VaR) and the implied Expected Shortfall (ES) as proposed in Barone-

Adesi (2016) (henceforth BA). However, these methods of model-free calculations largely depend

on the observed option prices which can be noisy as they are subject to pricing and recording errors,

especially for less liquid option contracts. In addition, options are usually observed with limited and

not equidistant strike prices, which introduces estimation bias to implied risk metrics. One could

instead turn to recover the risk-neutral density (RND) of the underlying asset returns from option

prices. The implied RND can be recovered parametrically by assuming a parametric distribution for

the underlying asset returns. One flexible choice is the mixture of normals as used in Huggenberger

et al. (2018), but it may still fail to capture the important information in option prices due to

a fixed distributional form. To be free of parametric assumptions, the RND is usually recovered

in a model-free fashion according to Breeden and Litzenberger (1978). Recovering a model-free

RND from options requires no-arbitrage prices and deviations from the no-arbitrage could lead

to a less-informative recovered RND. Shimko (1993), Figlewski (2010) address this problem by

interpolating the implied volatilities (IVs) with polynomial spline and transforming the interpolated

IVs to no-arbitrage prices, relying on the Black-Scholes formula. Nevertheless, as the same for the

observed prices, the observed IVs contain noise, and interpolation could easily overfit to those noisy

and erroneous IVs, in which case the no-arbitrage conditions can no longer be guaranteed by the

Black-Scholes transformation. Aı̈t-Sahalia and Lo (2000), Aı̈t-Sahalia and Duarte (2003) employ

the nonparametric kernel regression to construct an estimator for IVs, which is less influenced by

outliers but is still intensive in sample size and data regularity. Aı̈t-Sahalia and Duarte (2003)

use a combination of constrained least squares and nonparametric kernel regression to consider the

no-arbitrage constraints, but this constraining-then-smoothing procedure could sacrifice too much

information from the option data and introduce biases at the first step of solving the constrained
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least squared regression.

Decoding the predictive information from options hence faces a dilemma. The model-free calcu-

lations of implied risk metrics directly with option prices allow only a limited number of metrics to

be estimated (at least up to the current literature), and the recovery of implied RND has to either

accept parametric assumptions or deal with the noisy and irregular option data in order to recover

properly in a model-free way. This dilemma is even more severe for stock options, as for individual

stocks, their options are traded actively only at strikes around the spot price and the noise in

prices is larger because of more speculation. This paper provides insights to recover stock-level

RND with individual stock options and decode the predictive information for stock returns from

the recovered RND, by using the economics-aware machine learning that enforces the prior knowl-

edge about the shape of the latent option pricing function from the no-arbitrage principles. This is

made possible because of the recent developments in machine learning and optimization procedures

which give rise to nonlinear models with constraints. We achieve this by enforcing multiple linear

no-arbitrage inequalities to a Gaussian process (GP) which is a nonparametric data-driven learning

model. Therefore, the no-arbitrage representation of option prices can be learned over an extended

range of strikes given only the observed data and the priory known constraints, which exhibits

robustness to noisy and erroneous prices and helps to solve the dilemma by deriving model-free

stock-level RND with improved regularity and economic informativeness.

This paper contributes to three strands of literature. First, we contribute to the studies that

attempt to model option prices nonparametrically. One challenge in these studies is reserving

no-arbitrage properties for option prices while being independent of parametric assumptions. We

propose to employ the framework of constrained GP as proposed in López-Lopera et al. (2018)

to encode the full set of no-arbitrage constraints into a GP. The no-arbitrage constraints require

the option prices to be monotonic and convex with respect to strikes, and the prices need to be

non-negative at the same time, which can be formulated as a set of linear inequalities. We train an

unconstrained GP with observed option prices at the initial step, and then the no-arbitrage inequal-

ities are simultaneously enforced to the model outputs by solving a quadratic problem conditioning

on the fine-tuned hyperparameters. The choice of GP bypasses the selection of parametric option

pricing models, and the inclusion of no-arbitrage constraints guarantees economic-aware outputs of

option prices, particularly outside of the observed range of strikes. There is no need to model the

IVs and transform them to Black-Scholes prices as in Shimko (1993), Aı̈t-Sahalia and Lo (2000),

Figlewski (2010), which still has the reliance on the Black-Scholes model and can not guarantee no-
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arbitrage when the IVs are noisy. Additionally, the no-arbitrage-constrained GP can be extended

to higher dimensions to model option prices if high-dimensional option characteristics need to be

incorporated. The smoothness of the learned option pricing function is also ensured by the kernel

function inherited in the GP.

This paper also contributes to the estimation of stock-level RND using stock options. Based on

the no-arbitrage-constrained GP, we therefore propose a novel model-free RND-recovery method.

The no-arbitrage constraints are encoded globally into the fine-tuned GP, which outputs the

economics-aware option prices both within and outside of the observed range of strikes, and the

Breeden and Litzenberger (1978) theorem can therefore be directly applied. We do not need to

choose an ad-hoc parametric distribution to extrapolate the tails of the RND, for example, the

normal or the GEV tails as suggested in Figlewski (2010). In addition, we learn the no-arbitrage

representation of option prices separately for call and put options using the constrained GP, and

we blend the densities implied in call and put options into one aggregated density. That is, we

use the out-of-the-money call (put) options to form the RHS (LHS) of the RND respectively while

ensuring the recovered RND integrals to one. This allows the information from two sides to be en-

coded jointly, which is particularly useful when using the RND to gauge the asymmetry of investor

sentiments. We show in the simulations that our proposed constrained-GP-based RND-recovery

achieves much lower density loss compared with the conventional IV-based approaches, especially

when the option sample is small and noisy as is common to observe for stock options.

We contribute to the empirical literature of option-implied information for stock returns as

well. The information implied in stock-level RND is rarely discussed as there is no suitable es-

timation tool. Our proposed stock-level RND-recovery with no-arbitrage-constrained GP allows

us to comprehensively evaluate the predictive information encoded in the option-implied RND on

the cross-section of stocks that are the constituents of the S&P 500 index. We estimate an array

of implied risk metrics using the recovered stock-level RND to decode the implied information.

We focus on the implied tail risk measures including VaR, ES and left partial moment (LPM) to

examine the information for the left tail risk and use the implied moment-based return predictors

including the innovation of volatility, skewness and the asymmetry of variance to examine the stock

return predictability unlocked by the RND. To the best of our knowledge, our paper is among the

first to study the stock-level RND implied in options with such a large stock cross-section. Our

empirical analysis covers a long time period from 04 Jan 1996 to 31 Dec 2022. Estimating the

constrained GP to recover the RND for each stock from call and put options, with each available
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time-to-maturity, on each trading day requires a vast amount of computational power, as there are

around 10 million runs of model training in total. We use parallel computing procedures to fasten

the computation. We find, using stock-level time-series and cross-sectional regressions, that the im-

plied risk metrics estimated from the constrained-GP-based stock-level RND present significantly

improved predictive power for stock returns, in terms of both the left tail and the expectation.

When using the constrained-GP-based RND to estimate tail risk measures, the out-of-sample R1

is 4.92% higher on average across all stocks than using the IV-based approaches. When using the

constrained-GP-based RND to construct moment-based predictors for stock returns, the Sharpe

ratio of the long-short portfolio is 5.30 times higher on average.

The remainder of this paper is organised as follows. Section 2 describes the process to enforce

the full-set of no-arbitrage constraints simultaneously into a GP, and explains how we recover

a hybrid RND using call and put options jointly. Section 3 validates the accuracy of the RND

estimated with the no-arbitraged-constrained GP in a simulated economy, under various option

sample sparsity and irregularity conditions. 4 describes the data. Section 5 discusses our empirical

investigation and findings, and Section 6 concludes.

2 Methodology

In this section, we outline our methodology of encoding the economics-motivated no-arbitrage

option pricing constraints into a Gaussian process. The no-arbitrage constraints are hard-encoded

globally so that the constrained GP is economics-aware while learning from observed option prices.

This is a nonparametric and data-driven method to obtain no-arbitrage instead of relying on any

parametric option pricing models.

2.1 Economics-Aware Machine: The Constrained GP

Given the function of option prices C,P : [0,+∞)× [0,+∞) → R+, the objective is to learn the

function from noisy observations of call and put prices C̃, P̃ , on traded strike prices K̃, with the

following no-arbitrage constraints as in Härdle and Hlávka (2009) to satisfy for all strike prices K:

(i) positivity: C(K) ≥ 0, P (K) ≥ 0

(ii) monotonicity: ∂KC ≤ 0, ∂KP ≥ 0

(iii) convexity: ∂2
KC ≥ 0, ∂2

KP ≥ 0
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Consider a conventional GP prior on the option prices C(K), P (K),K ∈ R+, with a covariance

function Kθ(K,K ′):

C(K), P (K) = η(K) + y(K), ∀K ∈ R+, (1)

y(K) ∼ GP
(
0,Kθ(K,K ′)

)
, (2)

where η(K) is the mean process and y(K) is a zero-mean GP. For convenience, we consider the

case where η(K) = 0, and choose Kθ as a squared exponential covariance function.1 The model

performance and economic implications in Section 5 are robust to different choices of covariance

function Kθ. [· · · .]2 As we observe option prices with noise from the option market, we add

homogenous random noise ϵ ∼ N (0, σ2
noise1) to the zero-mean GP:

C̃(Ki), P̃ (Ki) = ỹi(Ki) + ϵi, i = 1, · · · , n (3)

ỹ(K) ∼ GP
(
0,Kθ(K,K ′) + σnoise1

)
. (4)

To simultaneously encode the positivity, monotonicity and convexity constraint into C(K), P (K)

over the entire domain of K ∈ R+, we first follow Maatouk and Bay (2017) to construct a finite-

dimensional approximation of the zero-mean GP:

ym(x) =
m∑
j=0

y(tj)ϕj(x), (5)

where x ∈ D is a min-max-standardized compact input space such that D = [0, 1],3 m is the number

of knots t1, · · · tm over the support D,4 ϕ1, · · · , ϕm are hat basis functions given by:

ϕj(x) :=


1−

∣∣∣x−tj
∆m

∣∣∣ , if
∣∣∣x−tj
∆m

∣∣∣ ≤ 1,

0, otherwise.
(6)

For simplicity, we consider equally spaced knots tj = (j − 1)∆m with ∆m = 1/(m − 1) as in

López-Lopera et al. (2018). Nonuniform knots or even knot-free design is also possible according
1Squared exponential covariance function: Kθ(K,K′) = σ2 exp

{
− (K−K′)2

2l2

}
with θ = (σ, l).

2We may consider other Kθ somewhere in Appendix.
3x = (K −Kmin)/(Kmax −Kmin). We set Kmin = 0,Kmax = 2× Ste

rT to allow the left and right extrapolation.
4A larger m gives improved approximation and smoother ym, but requires higher computational cost. We choose

m = 201 to achieve a good trade-off between the two targets.
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to López-Lopera et al. (2018).

Denote the option price at the knot tj of the finite-dimensional GP ym as ξj , for j = 1, · · · ,m.

Encoding the no-arbitrage conditions (i) - (iii) from the option pricing theory is equivalent to

computing the distribution of ym conditionally on ym ∈ Eno−arbitrage, where Eno−arbitrage is a convex

set of functions defined by no-arbitrage inequality constraints:

Eno−arbitrage :=


y ∈ C(D,R) s.t. y(x) ≥ 0 ∀x ∈ D,

y ∈ C(D,R) s.t. ∂xy ≤ 0 (call), ∂xy ≥ 0 (put) ∀x ∈ D,

y ∈ C(D,R) s.t. ∂2
xy ≥ 0 ∀x ∈ D.

(7)

The benefit of using the hat basis ϕj and the finite-dimensional approximation of GP ym,

according to Maatouk and Bay (2017), is that we have ym ∈ Eno−arbitrage ⇔ ξ ∈ Cno−arbitrage,

which means that encoding the no-arbitrage constraints to the entire domain of ym is equivalent to

encoding the same set of constraints to the designed knot points t1, · · · , tm. Thus, the conditional

distribution of ym on infinite-dimensional inequality constraints Eno−arbitrage can be solved with

only finite-dimensional inequality constraints:

Cno−arbitrage :=



∀j = 1, . . . ,m :

positivity︷ ︸︸ ︷
cj ≥ 0 ,

∀j = 2, . . . ,m :

non-increasing︷ ︸︸ ︷
cj − cj−1 ≤ 0 (call),

non-decreasing︷ ︸︸ ︷
cj − cj−1 ≥ 0 (put),

∀j = 3, . . . ,m :

convexity︷ ︸︸ ︷
cj − cj−1 ≥ cj−1 − cj−2 .

(8)

Given the observed option prices C̃(K), P̃ (K), the finite-dimensional GP ym can be written as

the following in order to learn from observed prices with no-arbitrage constraints:

ym(xi) =
m∑
j=1

ξjϕj(xi) + ϵi︸ ︷︷ ︸
finite-dimensional GP with noise

, s.t.


ym (xi) = ỹi (interpolation conditions),

ym ∈ Cno−arbitrage (inequality conditions).︸ ︷︷ ︸
learn from the observed prices + no-arbitrage constraints

(9)

Since the vector ξ = [ξ1, · · · , ξm]′ is a vector of realizations of the zero-mean GP ym at the knots

t1, · · · , tm, and Φξ = ym = [ym(x1), · · · , ym(xn)]
′ is the vector of the zero-mean GP realizations at

available training points x1, · · · , xn, we then have ξ ∼ (0,Γ) s.t. Φξ = y,x ∈ Cno−arbitrage, where

Γ = Kθ (ti, tj)1≤i,j≤m is the covariance function of ym evaluated at knots ti, tj .
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The no-arbitrage constraints in (8) can be encoded with the following linear operations:

Cno−arbitrage =

∀k = 1, 2, 3 : lk ≤
m∑
j=1

λk,jcj ≤ uk

 , (10)

where k = 1, 2, 3 corresponds to positivity, monotonicity and convexity constraint respectively,

lk and uk are the lower bound and upper bound of the inequalities. Therefore, the no-arbitrage

constrained GP can be solved with:

ξ ∼ N (0,Γ) s.t.


Φξ = y (interpolation conditions),

l ≤ Λξ ≤ u (inequality conditions),
(11)

where Λ = (λk,j)1≤k≤3,1≤j≤m is an auxiliary matrix to encode the desired set of no-arbitrage

inequalities, l = (lk)1≤k≤3 and u = (uk)1≤k≤3 are vectors of lower and upper bounds of the

inequalities.5 That is, we are interested in solving the conditional distribution:

ξ|{Φξ = y, l ≤ Λξ ≤ u} , ξ ∼ (0,Γ) , (12)

where p(ξ) ∝ 1
2ξ

′Γ−1ξ is proportional to the probability density of the unconditional ξ up to a

scaling constant. Therefore, encoding no-arbitrage constraints to the finite-dimensional GP ym is

equivalent to solving p(ξ) with restrictions Φξ = y and l ≤ Λξ ≤ u.

To reduce the computational complexity, we do not sample from the posterior distribution of ξ

according to López-Lopera et al. (2018), but rather focus on the maximum-a-posteriori of it. As in

Chataigner et al. (2021), the MAP estimation ξ∗ can be interpreted as the most probable predic-

tions of ym given the observed noisy option prices (interpolation conditions) and the no-arbitrage

constraints (inequality conditions). ξ∗ can be estimated by solving a quadratic programming:6

ξ∗ = min
ξ∈Rm

{
ξ′Γξ

∣∣∣Φξ = ỹ, l ≤ Λξ ≤ u
}
, (13)

and we then plug ξ∗ back to (9) to obtain the predictions of no-arbitrage option prices:

ym(xtesti ) =
m∑
j=1

ξ∗jϕj(x
test
i ). (14)

5We can provide an example of the matrix Λ in Appendix.
6We use the open-source software package CVXOPT based on Python to solve the convex optimization.
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2.2 Hybrid RND With Call and Put Options

We recover model-free RND with the predicted option prices from a no-arbitrage encoded finite-

dimensional GP. We define x := K/St as the moneyness of the observed option with strike price

K and spot underlying price St at time t, and train the model with observations (x̃, ỹ). One of the

convenience of using x = K/St is that x− 1 represents simple return of the underlying asset, and

therefore ∂xym, ∂2
xym imply the RND of simple asset returns at the terminal time T , according to

Breeden and Litzenberger (1978).

Denote ycallm , yputm the learned call option and put option prices with no-arbitrage constraints.

Since for the monotonicity constraint, we impose the weak form of no-arbitrage ∂xy
call
m ≤ 0 and

∂xy
put
m ≥ 0, which means the learned price is not bounded from above. We get around this is-

sue by using only the predicted out-of-the-money option prices to recover the model-free RND.

Consider a vector of test points xtest = [0.0, 0.01, · · · , 1.99, 2.0]′, we calculate the predictions of

out-of-the-money call option prices ycallm (xtest) ∀xtest ∈ [1.0, 2.0], and out-of-the-money put option

prices yputm (xtest) ∀xtest ∈ [0.0, 1.0). Since the encoded monotonicity constraints guarantee that

limx→2.0 y
call
m (x) = 0 and limx→0 y

put
m (x) = 0, and the sufficient traded options around x = 1.0

to train the GP ensure the regularity of ycallm (x = 1.0) and yputm (x = 1.0),7 the regularity of the

recovered FQ
call = ∂xy

call
m (x) ∀x ∈ [1.0, 2.0] and FQ

put = ∂xy
put
m (x) ∀x ∈ [0.0, 1.0) can therefore be

maintained.

We proceed to append the recovered RND fQ
call with predicted out-of-the-money call option

prices ycallm to the recovered RND fQ
put with predicted out-of-the-money put option prices yputm . This

means that the entire model-free RND fQ
hybrid of the underlying asset returns is composed by the

information from both the call and put options:

fQ
hybrid(x) :=


erτ ∂2yputm (x)

∂x2 if 0 ≤ x ≤ 1.0,

erτ ∂2ycallm (x)
∂x2 if 1.0 < x ≤ 2.0,

(15)

where the left (right) portion of the hybrid RND is governed by the out-of-the-money put (call)

option prices from the trained finite-dimensional GP ym(x) with no-arbitrage constraints.
7Otherwise, the regularity of the predicted option prices might not be guaranteed when x → 0 for ycall

m and x → 2.0
for yput

m .
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3 Simulations

We simulate the Heston-type stochastic volatility model according to Heston (1993). The Heston

(1993) model describes the dynamics of the asset price St and its variance vt under the risk-neutral

probability measure Q with the following system of stochastic differential equations:

dSt = rStdt+
√
vtStdW

S
t , (16)

dvt = κ (θ − vt) dt+ σ
√
vtdW

v
t , (17)

where St is the price of the underlying asset at time t, vt is the instantaneous variance of the

asset price, r is the dirt rate of the asset price, k is the speed of mean reversion of the variance,

θ is the long-term mean of the variance, σ is the volatility of the variance. WS
t and W σ

t are two

Brownian motions with correlation ρ that add stochasticity to the asset price and the variance

process respectively.

Synthetic option prices are generated from the Heston (1993) model. We rely on the character-

istic function of the Heston (1993) model to calculate the associated theoretical RND by using the

Fourier inversion. We follow Gil-Pelaez (1951) to evaluate the Fourier inversion of the characteristic

function more efficiently. The technical details of the implementation of the Heston (1993) model

RND computation can be found in Appendix A.

We simulate the Heston (1993) model with the following set of parameters: r = 0.05, ρ =

0.8, κ = 3, θ = 0.2, σ = 0.1, with the instantaneous variance v0 = 0.15 and the spot asset price

St = 100. We denote the theoretical RND implied in this model as fQ
Heston. To capture the real

characteristics of traded option prices, we consider a range of different sample size levels l and noise

conditions σ. Given N = 100 synthetic option prices from the perfect Heston (1993) model, the

sample size l controls how many option prices are sampled from theN prices, and the noise condition

σ defines the Gaussian random noise added to the sampled prices. Different l and σ attempt to

simulate different levels of option liquidity and pricing errors respectively. In our simulation study,

we consider l = {1.0, 0.5, 0.25, 0.05} and σ = {0.0, 0.3, 0.6, 0.9, 1.2}. We compare the theoretical

RND fQ
Heston with the CGP-based RND fQ

CGP derived from the GP with no-arbitrage constraints.

We also consider other model-free RND from the IV-based approaches including IVSPL-, IVGEV-

and IVSVI-based RND as the benchmark recovered RND.

To evaluate the entire RND recovered by different approaches, we first perform a quantile-by-

quantile comparison. The quantile loss at a given quantile is defined as the absolute deviation of
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the quantile from the recovered RND to the theoretical quantile from the Heston (1993) model.

For each scenario with a sample size l and a noise level σ, the simulation is repeated 100 times and

we then average the losses. From Figure 1, it is clear that the CGP-based RND fQ
CGP is closest

to the “true” RND fQ
Heston in terms of the considered quantiles, and is superior to other IV-based

model-free RND particularly when the sample size is small and the pricing noise is large.

[ Insert Figure 1 about here ]

We proceed to compare the recovered RND with the theoretical RND using probability density

divergence measures. The divergence measures calculate the distance of the recovered RND to the

“true” RND from the Heston (1993) model. We consider the following divergence measures: L2

(or Euclidean), Kullback-Leibler (KL) as in Kullback and Leibler (1951), Jensen-Shannon (JS) as

in Tishby et al. (2000), Wasserstein as in Rubner et al. (2000) and Hellinger as in Thomas and

Joy (2006). These measure the information loss when using the recovered RND from respective

approaches to approximate the theoretical RND. The calculation of each divergence measure can

be found in Appendix, and we again average the divergence across the 100 simulations. Figure 2

shows the results of each RND divergence measure across different RND-recovery approaches. The

information loss of the CGP-based RND is the smallest among all the considered RND and is also

robust to different definitions of divergence.

[ Insert Figure 2 about here ]

4 Data

In this section, we describe our data on stocks and stock options that we employ in our empirical

study. Stock and stock option data are from OptionMetrics through Wharton Research Data

Services (WRDS). The risk-free rate data are obtained from OptionMetrics as well with linear

interpolation of the zero coupon yield curve. Our sample period is from 04 January 1996 to 31

December 2022. We focus on stocks that are in the S&P 500 index on the first trading day of each

year, and the stock sample is held fixed throughout the year.

For stocks in our sample, we collect the stock options written on them. We collect options

with time-to-maturity from 7 days (one week) to 360 days (one year) as these stock options are
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actively traded and hence more informative. Most of the traded stock options are American style

(with an “A” exercise style flag in OptionMetrics), and we therefore collect only American stock

options from OptionMetrics. We do not adjust for the early-exercise premium in American options,

as this premium should be tiny for the less than one-year option terms we consider. We apply a

series of filters to option data to discard thinly traded stock options and possible record errors.

We eliminate options with zero volume or open interest, and options with zero best bid price are

excluded. To ensure meaningful stock-level RND can be recovered from traded options, we require

for both put and call that there are at least five observed options, with more than two of them

being out-of-the-money. The filters we apply are the least restrictive ones among the stock option

literature. The standard option data filters commonly used as suggested in Goyal and Saretto

(2009) may substantially miss useful information implied in options as only the liquid and noiseless

enough options are left. The less restrictive filters allow us to test whether our proposed stock-level

RND-recovery with constrained GP is able to unlock economic information from illiquid and noisy

options that are traded. We also discard stocks whose options are inactively traded. The complete

list of stock and stock option selection criteria can be found in Appendix B.

We recover stock-level RND using the filtered stock options and then calculate implied tail

risk measures and implied moment-based return predictors. The implied tail risk measures are

calculated for each stock and for each week on Wednesday. The implied moment-based return

predictors are calculated for each stock and for each month on the last trading date of the month.

We also calculate stock-based measures by only using observed stock returns. Since the calculation

of stock-based measures requires historical stock data, the comparison of option-implied measures

with stock-based measures in our empirical analysis starts at the beginning of 1997 instead of 1996

which is the beginning of the stock option sample, as we require one year of stock data in history

to calculate stock-based measures.

We report in Table 1 the cross-sectional and time-series average of some selected option and

stock characteristics, including the number of traded option contracts, the time-to-maturity, the

moneyness, the trading volume, and the open interest of options. We follow Barone-Adesi (2016) to

calculate the minimum αQ for each stock and for each available time-to-maturity on a given day. The

minimum αQ implies the minimum cumulative probability that can be recovered from raw options

without any further estimation techniques. We use only put options to calculate the minimum αQ

as the left tail of the implied distribution is concerned most of the time. In Table 1, we divide stocks

into four categories according to their firm size which is computed as the stock’s close price times
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its share outstanding. The “Small” category includes small-sized stocks whose size is below the

25% quantile, the “Small-Medium” category includes small-to-medium-sized stocks whose size is

between the 25% and the 50% quantile, the “Medium-Large” category includes medium-large-sized

stocks whose size is between the 50% and 75% quantile, and the “Large” category includes stocks

whose size is above the 75% quantile. Stock and option characteristics are calculated monthly on

the end date of each month.

[ Insert Table 1 about here ]

5 Empirical Analysis

In this section, we extensively evaluate the predictive information encoded in the stock-level

RND estimated with our CGP-based RND-recovery method and compare it with the commonly-

used RND-recovery with implied volatilities in the literature. We compress the information of the

recovered RND using a comprehensive list of risk metrics as introduced in Section 5.2, including

tail risk measures and moment-based cross-sectional stock return predictors. The trapezium rule

is used to evaluate the integral when using the recovered RND to calculate the risk metrics.8

Section 5.1 nonparametrically evaluates the regularity of the recovered stock-level RND, using

the stock options with one-month time-to-maturity as an example. Section 5.3 investigates the

informativeness of the RND-based implied tail risk measures for the left-tail risk of stock returns.

Section 5.4 tests the additional economic information of moment-based cross-sectional stock return

predictors when the predictors are constructed with the CGP-based RND. Section 5.5 explores the

reactions of stock-level RND around the stock’s earning announcement dates to the stock returns

in this period.

5.1 RND Estimation Evaluation

We follow Diebold et al. (1997) to evaluate the model-free RND recovered from option prices.

Evaluating the RND estimation is a nontrivial task as the realization of the density estimation is

not observable in complete.

Given a series of observed stock returns ri,t for stock i at time t, and a sequence of the RND

estimation fQ
i,t−1(rt) formed at time t − 1, we rely on the probability integral transform (PIT) zt,

8The trapezium rule with discretized integrand:
∫ b

a
f(x)dx ≈

∑N
k=1

f(xk−1)+f(xk)

2
∆xk.
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of the realization of the return process taken with respect to the RND estimation, as suggested

in Diebold et al. (1997), to test the specification of the density. The PIT at time t is defined as

zi,t =
∫ ri,t+1

−∞ fQ
i,t(rt+1)dr, with respect to the RND estimation for stock i formed at time t − 1 for

stock return at time t. According to Diebold et al. (1997) and Berkowitz (2001), if fQ
i,t is correctly

specified, then zi,t
i.i.d.∼ U(0, 1).

Denote zQi,t, zFi,t the quantiles and probabilities from the empirical cumulative density function of

zi,t, we test the uniformity of zi,t by regressing zFi,t on zQi,t. The zi,t from a sequence of well-specified

RND estimations will exhibit a coefficient that is close to one and an intercept that is close to zero.9

[ Insert Figure 3 about here ]

Figure 3 illustrates the RND evaluation results for stock-level RND recovered from options with

one-month time-to-maturity as an example. We select 16 different representative stocks across the

industry of technology, healthcare, financial and industrial to evaluate the process of the recovered

one-month stock-level RND. The upper row of each subplot in Figure 3 shows the distribution of

zi,t, and the lower row shows the line of
(
zQi,t, z

F
i,t

)
. The dashed grey line is a 45◦ straight line

which represents the case of a well-specified process of RND estimations. We observe that only

the line of
(
zQi,t, z

F
i,t

)
generated from the processes of the CGP-based stock-level RND estimations

are consistently close to the dashed grey line, and the lines of
(
zQi,t, z

F
i,t

)
generated from the IV-

based RND estimations present obvious departure from the dashed grey line, which highlights the

superiority of the CGP-based method for the stock-level RND estimation.

5.2 Generalized Implied Risk Metrics Estimation

This section provides a generalized approach to estimate risk metrics of the underlying asset

returns implied in options. Unlike the existing model-free estimation of some implied risk metrics,

such as the implied moments of Bakshi et al. (2003), and the implied VaR and ES in Barone-Adesi

(2016), the generalized estimation we use relies only on the RND recovered. [· · ·.]10

Given that the model-free RND fQ is recovered “exactly” over the support x ∈ [0, 2.0], a wide

variety of risk metrics can be evaluated numerically without the estimation of further parameters.
9We do not use the popular Kolmogorov-Smirnov (KS) test, as this method is less sensitive to “irregular” zi,t that

is outside of U(0, 1).
10We might need a short discussion of the difference between our generalized estimation and the model-free ap-

proximation of Bakshi et al. (2003) and Barone-Adesi (2016).
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We focus on the estimation of the following implied risk metrics:

Implied VaR: V aRQ
t,T (R;α) := − inf

{
z ∈ R|FQ

t,T (z) ≤ α
}
, (18)

Implied ES: ESQ
t,T (R;α) := 1/α

∫ V aRQ

−∞
RfQ

t,T (R)dR, (19)

Implied Volatility: V olQt,T (R) :=

∫
(R− µ∗)2fQ

t,T (R)dR, (20)

Implied Skewness: SkewQ
t,T (R) :=

∫ (
R− µ∗

σ∗

)3

fQ
t,T (R)dR, (21)

Implied LPM: LPMQ
t,T (R; h̄) :=

∫ h̄

−∞

(
R− h̄

)2
fQ
t,T (R)dR, (22)

Implied UPM: UPMQ
t,T (R; h̄) :=

∫ ∞

h̄

(
R− h̄

)2
fQ
t,T (R)dR. (23)

The selected implied risk metrics from (18) to (23) emphasis different aspects of the recovered

stock-level RND fQ. The implied VaR and ES focus on the extreme left tail of the RND, and the

implied volatility and skewness focus on the entire shape of the RND. Compared with the implied

volatility, the estimation of implied skewness demands a more well-specified stock-level RND as

the calculation of the third-order central moment is sensitive to outliers in the estimated RND.

The implied LPM and UPM measure the partial moments of the return distribution instead of the

complete moments, which also builds on the notion of semivariance as in Markowitz (1952). In our

empirical analysis, we construct tail risk measures and moment-based predictors for stock returns

using the above definitions of risk metrics.

5.3 Implied Tail Risk Measures

Different from the standard RND-recovery as in Aı̈t-Sahalia and Lo (2000) and Figlewski (2010)

where the tails of the RND are extrapolated assuming a particular distribution with heavy tails,

such as GEV, student-t and skewed-t distribution, as no-arbitrage option prices are not available

outside of the observed range of moneyness, our method does not append any ad-hoc distribution to

the tails. Instead, since we learn the economics-aware representation of the option pricing relation

from observed options, no-arbitrage prices in the tails can be predicted from the constrained GP

without additional assumptions. This allows us to directly estimate the model-free RND tails

together with the median part of the RND, conditional on the observed option prices only. As we

are interested in the extreme loss measures of stock returns implied in their options, we use the

recovered left RND tail to calculate the implied tail risk measures.
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5.3.1 Predict The Quantile of Stock Returns

The implied VaR and ES measure the magnitude of the extreme loss of stock returns implied

in stock options. The implied LPM measures the left semi-variance of stock returns, that is how

volatile the stock return will be conditional on the stock return being negative. These three tail

risk measures have different dependencies on the recovered RND. The implied VaR requires only

a point xα at which the implied cumulative probability is α from the left tail. The implied ES

requires the left tail below xα. The implied LPM requires the entire left half of the RND (that is

the RND below x50%).

Stock-level quantile regressions in time-series. We first analyze the predictive information

provided by the tail risk measures estimated from the CGP-based stock-level RND. As we are

interested in the relation of the conditional left quantile of stock returns with the estimated implied

tail risk measures, we employ the stock-level quantile regression model as follows:

Qri,t+1wk
(θ|Mtail

i,t ) = β0(θ) + β1(θ)Mtail
i,t +Z⊤

i,tβZ(θ), (24)

where Qri,t+h
(θ | Mtail

i,t ) represent the conditional θ-quantile of the weekly returns for stock i at one

week after the implied tail risk measure estimation time t. The set Mtail
i,t = {VaRQ

i,t,ES
Q
i,t,LPM

Q
i,t}

comprises the implied tail risk measures that we consider. Zi,t = {VaRP,Betamkt,Coskew, Size,

Ivol, Ivol⊥, Iskew, Ikurt, Idiovol, Idiovol⊥, Idioskew} denotes the list of control variables. Both the

implied tail risk measures and the control variables in the model (24) are estimated at time t. We

choose θ = 10% to identify losses as extreme as the 10% left quantile of the weekly stock returns.

The regression coefficients of the predictive quantile model in (24) are estimated by minimizing

the quantile-weighted absolute value of errors according to Koenker and Bassett (1978):

β̂θ = argmin
βθ∈Rp

Ti−1wk∑
t=1

ρθ

(
ri,t+1wk − x⊤

i,tβ
)
, (25)

where Ti is the number of available weekly return observations for stock i, ri,t+1wk is the realized

weekly stock return at time t+ 1wk, and xi,t is the vector of included variables.

The quantile regression model provides a more rigorous evaluation for the performance of im-

plied tail risk measures in anticipating the extreme left-tail risk of stock returns, as suggested by

Gaglianone et al. (2011), compared with the violation-based backtesting as in Christoffersen (1998)

and Engle and Manganelli (2004). Since the inclusion of the investor’s subjective risk aversion in
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the implied tail risk measures, they are not directly comparable to the realized stock returns under

the physical probability measure in magnitude, which therefore makes the violation-based tests less

indicative for the informativeness of the considered tail risk measure.

[ Insert Table 2 about here ]

Table 2 reports the percentage of stock-level time-series quantile regressions where V aRQ is

statistically significant for predicting the 10% quantile of weekly returns, at the 10%, 5% and 1%

significance level, across the entire cross-section of stocks in our sample. We observe that the implied

VaR derived from the CGP-based RND is a stronger predictor for the left tail of the stock’s weekly

returns than the VaR derived from historical stock price data with a GARCH-GJR (1,1) model.

The V aRQ from the CGP-based RND unlocks statistically significant predictive information for

about 17.57% more stocks in average than the stock-based V aRP, when considering a univariate

regression model of (24) with V aRQ and V aRP separately as reported in the “Option” and “Stock”

column. The orthogonal information provided by V aRQ is more evident when a bivariate model

of (24) where V aRQ and V aRP are included jointly, as the percentage of regressions where V aRQ

is statistically significant is 52.17% higher than the case of V aRP in average. The percentage of

regressions where V aRQ is significant remains considerably high when other control variables are

considered in the quantile model. Similar observations can be found for the ESQ and LPMQ from

the CGP-based RND, as presented in Table 3 and Table 4. This implies that the extrapolated

option prices over small moneyness with no-arbitrage constraints encode useful information which

is superior to the information in historical stock returns for the left tail of stock returns.

[ Insert Table 3 about here ]

[ Insert Table 4 about here ]

We proceed to compare the informativeness of the implied tail risk measures generated from

different RND-recovery methods. We use the IV-based methods as proposed in Figlewski (2010)

but with different extrapolation techniques as the benchmark models. Specifically, we interpolate

the observed IVs with cubic spline, and consider constant extrapolation—extrapolating the left and

right part of the IV smirk with the nearest observed IV, and GEV extrapolation—extrapolating
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the left-tail repriced Black-Scholes put option prices according to Hamidieh (2017). In addition, we

also consider the RND-recovery based on parametric no-arbitrage IV smirk. That is, we calibrate

a stochastic volatility inspired (SVI) model proposed by Gatheral (2004) to the observed IVs.

[ Insert Figure 4 about here ]

Figure 4 shows the informativeness of the implied tail risk measures estimated from the RND-

recovery methods we consider. We calculate the out-of-sample R1 measure to compare the per-

formance of the implied tail risk measure estimation. The out-of-sample R1 measure is calculated

from the stock-level univariate quantile model where the implied tail risk measure to test is the

only predictor. The averaged R1 is the average of out-of-sample R1 across all stocks in the sample.

For each stock-level univariate quantile regression, we use the first 70% of the weekly observations(
ri,t+1wk,Mtail

i,t

)
as the in-sample data to estimate the coefficients β0(θ = 10%) and β1(θ = 10%),

and keep them unchanged to calculate the out-of-sample R1 in the remaining 30% of the observa-

tions according to Koenker and Machado (1999).11

The informativeness of the implied tail risk measure from the recovered RND depends on the

predictive information encoded in the extrapolated left tail of the RND. We observe from Figure 4

that the implied tail risk measures estimated from the left RND tail recovered with the no-arbitrage

constrained GP provide the highest averaged R1 across full-sample, in-sample and as well as out-

of-sample of the weekly observations. Notably, for the implied ES and implied LPM which can be

regarded as nonlinear transformations of the RND, the outperformance of the CGP-based RND

left tail compared with the constant, GEV and SVI-parameterized extrapolated RND left tail is

more apparent. For the implied ES and implied LPM, we observe nearly zero or even negative

averaged out-of-sample R1 from the GEV and SVI-parameterized left RND tail, which implies that

extrapolating the left-tail of the stock-level RND with parametric component does not help to

capture predictive information for the tail risk of stock returns in out-of-sample.

Table 5 reports the summary statistics of the entire distribution of the in-sample and out-of-

sample R1 across all considered stocks. It confirms that the outperformance of the CGP-based

left RND tail is not only observed in the mean of stock-level R1 as shown in Figure 4, but is also

observed in other quartiles of the stock-level R1. This ensures that the CGP-based left RND tail

unlocks more predictive information than other IV-based left RND tails for most of the stocks,

regardless of whether the options provide tiny or considerable information in nature.
11The calculation of out-of-sample R1 can be put in Appendix.
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[ Insert Table 5 about here ]

Panel quantile regression with fixed effects. To examine whether the superior predictive

information for the tail risk of stock returns provided by the implied tail risk measures persists

in a large panel of stocks, we estimate panel quantile regression models with fixed effects. By

considering the fixed effects, unobserved characteristics that are invariant across stocks over time

can be controlled. [· · ·.]12 While the stock-level quantile regressions in time-series investigate the

predictive power of the implied tail risk measures for each individual stock, the panel quantile

regressions test whether they are still significant predictors for the tail risk of stock returns in

cross-section. We follow Machado and Silva (2019) to estimate panel quantile regressions with

fixed effects:

Qi,t+1wk

(
θ
∣∣∣Mtail

i,t

)
= (αi + δiq(θ)) + βtailMtail

i,t +Z⊤
i,tβ

Z +Z⊤
i,tγq(τ), (26)

given observations
(
ri,t+1wk,X

⊤
i,t

)⊤
from the panel of N individual stocks i = 1, · · · , n over

T time periods, t = 1, · · · , T . X⊤
i,t is the vector of included predictors with control variables(

Xi,t =
[
Mtail

i,t , Zi,t

])
. The parameters (αi, δi) capture the stock i fixed effects, and Z⊤ is a vector

of transformation of X⊤. The scalar coefficient αi(θ) := αi + δiq(θ) is the θ-quantile fixed effects

for stock i, with P
{
δi +Z⊤

i,t > 0
}
.

Table 6 presents the results of the fixed effects panel quantile regressions. We observe that both

the option-implied and the stock-based VaR are statistically significant predictors for the 10%-

quantile of the stock return in the next week, although they are in different magnitudes as they

are estimated from different probability measures. When we consider a bivariate case with V aRQ

and V aRP, the coefficient of V aRP decreases to near zero and its absolute value of t-statistic drops

to 0.51, while the coefficient of V aRQ is almost not changed with its absolute value of t-statistic

boosted to 29.33. This observation highlights the fact that there is extra predictive information

encoded in the V aRQ from the CGP-based RND and the information is strongly orthogonal to

the information encoded in V aRP. From Table 6, the predictive power of V aRQ is statistically

significant in the panel data of cross-sectional weekly stock returns over the considered period of

time, and the predictive power is also robust to other control variables. The same panel quantile

regressions with fixed effects for the ESQ and LPMQ from the CGP-based stock-level RND can
12More detailed explanation of why using panel quantile regression with fixed effects? How it shows the tail risk

predictability of implied tail risk metrics in panel?
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be found in Table 7 and Table 8.

[ Insert Table 6 about here ]

[ Insert Table 7 about here ]

[ Insert Table 8 about here ]

5.3.2 Predict Crash Risk of Stock Returns

The above analysis of tail risk predictability uses the stock’s raw returns. To make sure that the

tail risk predictability provided by the implied tail risk measures is not distorted by market-wide

factors captured in raw returns, we test whether the implied tail risk measures can still predict the

crash risk of stock returns. The estimation of the stock’s crash risk depends on its residual returns

instead of raw returns. We follow Hutton et al. (2009) to estimate the stock’s residual returns from

an expanded index model:

ri,t = α0 + α1rmkt,t−2 + α2rmkt,t−1 + α3rmkt,t + α4rmkt,t+1 + α5rmkt,t+2 + ϵi,t, (27)

where ri,t is the raw return of stock i at time t, rmkt,t is the raw return of the S&P 500 index at

time t. The nonsynchronous trading is captured by including lead and lag terms for the S&P 500

index. To avoid the estimation error for crash risk due to the highly skewed residuals in (27), we

apply the log transformation according to Chen et al. (2001) and Hutton et al. (2009). That is, we

calculate r̃i,t := log(1+ ϵi,t) as the residual return of stock i at time t. For each stock in the sample,

we calculate r̃i,t in a yearly basis, with the condition that there is at least 50 day-observation for

raw stock returns and the index returns in the year.

We use the negative coefficient of skewness (NCSKEW), and the down-to-up volatility (DUVOL)

as in Chen et al. (2001) to capture the stock’s crash risk. These two measures are calculated using

the daily residual stock returns within a specified investment horizon from time t. For example, we

calculate the NCSKEW of stock i over the horizon from time t to T as the follows:

NCSKEWi,t:t+T = −
(
n(n− 1)3/2

∑
r̃3i,t

)/(
(n− 1)(n− 2)

(∑
r̃2i,t

)3/2)
. (28)
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A higher NCSKEWi,t:T corresponds to a more left-skewed residual stock return distribution. We

calculate the DUVOL of stock i from time t to T as follows:

DUV OLi,t:T = log

{
(nu − 1)

∑
down

r̃2i,t

/(
(nd − 1)

∑
up

r̃2i,t

)}
, (29)

where nu and nd are the number of up and down days, and up (down) days are the days where the

residual return is above (below) the period mean. Again, a higher DUV OLi,t:T corresponds to a

more left-skewed residual return distribution within the period.

Cross-sectional regressions of stock’s crash risk. We employ the Fama and MacBeth

(1973) two-step procedure to test whether the implied tail risk metrics can predict the stock’s

crash risk in cross-section. Implied tail risk measures are sampled on the end date t of each month,

and the stock’s crash risk is calculated with the returns within a looking-ahead period that starts

from time t and ends at t+ h. We estimate the cross-sectional regression models as follows:

CRASHi,t+h = β0
t + β1

tMtail
i,t +Z⊤

i,tβ
Z
t + ϵi,t, (30)

where CRASHi,t+h = {NCSKEWi,t:t+h, DUV OLi,t:t+h}, Mtail
i,t and Zi,t are the tested implied

tail risk measure and the list of control variables as defined previously.

[ Insert Table 11 about here ]

Table 11 presents the regression results using NCSKEWi,t+h as the stock crash risk proxy, with

h equals 6 months. The choice of 6 months is to include more extreme realizations of residual stock

returns to make the crash proxy be able to capture extreme crash risk. We observe that the V aRQ

from the CGP-based RND is a statistically significant predictor for the stock’s NCSKEWi,t+6mo

in cross-section, with t-statistic of -5.90. It is interesting to observe a strong negative association

between V aRQ and NCSKEWi,t+6mo. One possible interpretation is that V aRQ increases with the

thickness of the left tail for the stock returns, which is opposed to the crash risk proxy that measures

the left-skewness for the stock returns by construction. The statistically significant predictive

power of V aRQ is not affected after controlling for the firm-characteristics, the BKM’s option-

characteristics and the stock’s idiosyncratic risks.

[ Insert Table 14 about here ]
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Table 14 presents the regression results using DUV OLi,t+6mo as the stock crash risk proxy. The

results are similar to what can be observed from Table 11. The V aRQ from the CGP-based RND

is a strong predictor for DUV OLi,t+6mo in the stock’s cross-section as well. The adjusted R2 from

the V aRQ-only regression is at 2.50% for DUV OLi,t+6mo, which is slightly higher than the case

of NCSKEWi,t+6mo. This is because that the calculation of NCSKEW is more sensitive to the

noisy outlier residual stock returns in the considered horizon than DUV OL.

In Table 17, we benchmark the implied tail risk measures estimated with our CGP-based RND

to those from the RND recovered by the IV-based methods, in terms of predicting the stock’s crash

risk. From Model 1 to Model 5 in Table 17, control variables are added progressively. In this

test, we consider more looking-ahead horizons, including 1-month, 3-month and 6-month period, to

investigate whether the stock’s crash risk predictability of the implied tail risk measures is robust

to the different calculation horizon of the crash risk proxy. IV-based methods with parametric left

RND tail extrapolations perform closely in terms of the t-statistics of V aRQ. The exception is the

SVI-parameterized left extrapolation. We observe that in model 3 and model 5 in Panel A, and

model 5 in Panel B, with the crash proxy calculation horizon of 1 month, the V aRQ from the SVI-

parameterized extrapolated left RND tail is not statistically significant. In addition, we also report

the averaged R2 across 5 models for each horizon in Table 17. It is notable that the no-arbitrage

constrained GP extrapolation provides the highest averaged R2 over the 1-month, 3-month and

6-month horizon.

[ Insert Table 17 about here ]

5.4 Implied Moment-Based Stock Return Predictors

The estimated implied tail risk measures focus on the left part of the recovered stock-level

RND. In this section, we evaluate the predictive information encoded in the complete RND, by

using the moment-based measures including the implied volatility, skewness, LPM and UPM that

are introduced in Section 5.2. Since the complete stock-level RND is used, the informativeness of

the moment-based measures from the RND majorly depends on two aspects of the RND-recovery

method: the capability of encoding forward-looking information from observed stock option prices

and the regularity of the recovered RND. The regularity of the RND is important as too much

irregularities will distrot the estimation of moment-based predictors based on the RND.
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We estimate the option-implied volatility and skewness based on the recovered stock-level RND.

The estimation of the implied volatility and skewness can also be calculated according to the model-

free approximations as proposed in Bakshi et al. (2003). We start with analizing the estimations of

the implied volatility and skewness from different approaches. Table 18 summarizes the distribution

and the correlations of the monthly stock-level implied volatility and skewness across the cross-

section of stocks in our sample.

The Panel A shows that the distribution of the stock-level implied volatility does not vary

significantly across different estimation techniques, but this is not the case for the distribution of

the stock-level implied skewness. We observe notable differences in the mean, the median, the

5th and 95th percentile, from the distribution of the implied skewness by different RND-recovery

approaches. Among all the considered techniques, the CGP-based RND-recovery provides the

estimation of implied skewness with the smallest standard deviation, which is a hint that this

technique generates more stable and noiseless third-moment estimations.

[· · ·.]13

The Panel B shows that the cross-sectional correlations of the monthly stock-level implied

volatility across different approaches are high. Although the CGP-based method learns directly

from the observed stock option prices with no-arbitrage constraints, which is methodologically dif-

ferent from the other IV-based approaches, the average cross-sectional correlation of the CGP-based

implied skewness with others is still as high as 0.83. This is actually expected and also confirms that

the RND-based estimation of implied moment is correctly specified. However, the cross-sectional

correlations of the implied skewness are notably smaller. The highest implied skewness correlation

is observed between the CGP-based and the BKM method at 0.02.

[ Insert Table 18 about here ]

5.4.1 Portfolio Sorting

We evaluate the economic information provided by the implied moment-based measures from

the recovered stock-level RND using portfolio analysis. Stocks are sorted into quintile portfolios

based on the magnitude of the estimated moment-based measures. The first quintile corresponds
13We might need a follow-up regression to show the robust and stability of implied skewness estimation using the

CGP-based RND indeed help to predict the skewness of stock returns. That is, we may need the evidence to show
such skewness estimations from the CGP-based RND are more close to the realized ones.
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to the stocks with the moment-based measures in the lowest magnitude, and the fifth quintile

corresponds to the stocks with the moment-based measures in the highest magnitude. We then

form long-short portfolios by buying the stocks in the fifth quintile and selling the stocks in the first

quintile. The quintile portfolios are formed on the end date of each month, from Jan 1997 to Dec

2022, and the performance is evaluated using the realized stock returns by holding the portfolios

untill the end of the next month.

Stock-level RND-based skewness. Figure 5 shows the monthly cumulative returns of the

long-short SkewQ portfolios by using different RND-recovery methods. We observe that prior to the

financial crisis of 2007-2008, the performance of the CGP portfolio is outperformed by the IVGEV

portfolio, ranking at the second place among all the recovery approaches considered. However, the

performance of the CGP portfolio is notably improved after the financial crisis and outperforms all

other portfolios significantly. This is because that the trading volume of stock options explodes after

the financial crisis, which means that there is more informative information which can be learned

directly from the stock option prices, and the nonparametric data-driven approach of no-arbitrage

constrained GP is most suitable in this scenario.

[ Insert Figure 5 about here ]

The Sharpe ratio of the CGP portfolio is the highest at 0.20, over the period from Jan 1997 to

Dec 2022, and is nearly as double as the IVGEV portfolio which is the second best. The constant and

the SVI-paramterized extrapolated RND generate Sharpe ratios that are not significantly different

from zero, with 0.02 and 0.05 respectively. We also calculate the t-statistic for each portfolio. Only

the CGP-based long-short SkewQ portfolio gives a notable t-statistic at 2.9, which implies strong

statistically nonzero monthly portfolio returns.

Stock-level RND-based volatility innovation. In the literature of empirical asset pricing

with option-implied predictors, according to Dennis and Mayhew (2002), it is acknowledged that

it is the innovation of implied volatility, instead of the implied volatility itself, that relates to

stock returns. Dennis et al. (2006) relies on the stock-level standardized implied volatilities from

stock options with one-month expiration, in the Berkeley Option Data Base, to calculate the implied

volatility innovation in a daily frequency. We use the RND-based estimation of the implied volatility

innovation as explained in Section 5.2 in monthly frequency.

Figure 6 shows the monthly cumulative returns of the long-short ∆V olQ portfolios by using

different RND-recovery methods. Similar to the case of SkewQ, the CGP-based long-short portfolio
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notably outperforms other portfolios after the financial crisis of 2007-2008. Prior to the crisis, the

CGP-based portfolio performs closely to the IVSVI portfolio and better than IVSPL and IVGEV

portfolios, but is slightly outperformed by the BKM portfolio.

The Sharpe ratio of the CGP portfolio is the highest at 0.04, while all other competing portfolios

generate zero or negative Sharpe ratios, which highlights the additional economic information

unlocked by the estimation of stock-level implied volatilities from CGP-based RND. Though the

monthly returns of the CGP-based ∆V olQ long-short portfolio are not statistically different from

zero, with t-statistic of 0.65, it still presents the highest t-statistic for monthly returns among all

considered portfolios.

[ Insert Figure 6 about here ]

Stock-level RND-based asymmetry of variance. We proceed to investigate whether the

inclusion of the information from the out-of-the-money call and out-of-the-money put stock op-

tions in the stock-level RND, by using the CGP-based recovery, provides additional economic

value. Bollerslev et al. (2019) separates the so-called up and down semi-variances from positive

and negative high-frequency price increments. We follow a similar intuition, but instead of using

observed stock returns, we attempt to construct the semi-variances with the option-implied return

distribution. The UPMQ and LPMQ in Section 5.2 correspond to up and down implied vari-

ances for stock returns. We define the difference AV ARQ := UPMQ −LPMQ as a moment-based

measure to capture the asymmetry in stock return variance.

[ Insert Figure 7 about here ]

Figure 7 shows the monthly cumulative returns of the long-short AV ARQ portfolios by us-

ing different RND-recovery methods. Again, we observe that the performance of the CGP-based

portfolio is closely tracked by the IVSPL and the IVSVI portfolios before the financial crisis of

2007-2008. The IVGEV-based AV ARQ long-short portfolio performs the best in this pre-crisis

period. But the performance of the CGP-based portfolio is notably improved after the crisis. The

CGP-based long-short portfolio outperforms others at all times in the post-crisis period.

The Sharpe ratio of the CGP-based portfolio is again the highest at 0.12. We calculate the

t-statistics of the monthly returns for all considered portfolios. Our construction of the stock-level

asymmetry of variance with the CGP-based recovery generates monthly long-short portfolio returns
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that are statistically nonzero with t-statistic of 1.80, which is also the highest among the tested

portfolios. The t-statistics of other AV ARQ long-short portfolios do not imply significantly nonzero

monthly returns.

[ Insert Table 19 about here ]

We compare the performance of the moment-based long-short portfolios formed with different

RND-recovery techniques. Table 19 presents the Sharpe ratios and t-statistics of the monthly

portfolio returns. For the three moment-based stock return predictors we consider, the CGP-

based portfolios provide the highest Sharpe ratios and t-statistics, which highlights the additional

economic information unlocked by the no-arbitrage constrained GP.

5.4.2 Cross-Sectional Regressions

We proceed to evaluate the pricing effects of the moment-based return predictors using the

Fama and MacBeth (1973) cross-sectional regressions. The cross-sectional regressions serve as

further scrutiny of the economic significance provided by the moment-based predictors in addition

to the portfolio analysis in Section 5.4, in which a set of control variables can be included.

Univariate setting. We first consider a univariate case of the cross-sectional regressions where

only the estimated moment-based predictor Mmom
t from the stock-level RND at time t is included,

with the regression model as follows:

reti,t+1mo = β0
t + β1

tMmom
i,t + ϵi,t, (31)

where reti,t+1mo is the return for stock i from t to one month after t,Mmom
i,t =

{
SkewQ

i,t,∆V olQi,t, AV ARQ
i,t

}
.

This univariate setting directly investigates the economic information of the moment-based predic-

tor estimation itself. The regression result should give implications for the informativeness of the

RND-recovery methods. Table 20 shows the results of the univariate cross-sectional regressions. We

report the coefficients of each moment-based predictor and the intercepts, with their corresponding

t-statistics. We observe that for all the moment-based predictors SkewQ,∆V olQ, AV ARQ we con-

sider, the estimation from the CGP-based RND is always statistically significant. The t-statistics

of the estimation form the CGP-based RND are 1.97, 2.01 and 2.50 respectively for the predictor

of SkewQ,∆V ol and AV ARQ. Other considered RND-recovery approaches can not provide sta-
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tistically significant moment-based predictor estimations in cross-section, except that the IVSPL

method gives the estimations of AV ARQ with t-statistic of 1.72 for cross-sectional stock returns.

[ Insert Table 20 about here ]

Multivariate setting with control variables. We then consider a multivariate case of the

cross-sectional regressions where a set of control variables are included to test the robustness of

the moment-based predictor estimation using each RND-recovery method. The multivariate cross-

ectional regression model is specifed as follows:

reti,t+1mo = β0
t + β1

tMmom
i,t +Z⊤

i,tβ
Z
t + ϵi,t, (32)

where Z⊤
i,t is a set of contemporaneous control variables for stock i as we defined in the previous

sections. Table 21 shows the results of the multivariate cross-sectional regressions. We report the

coefficients and the t-statistics of the moment-based predictors and the intercepts in multivariate

models. In this test, we only consider the predictor estimations from the CGP-based RND. From

column (1) to column (4) for each moment-based predictor in Table 21, firm-characteristics, BKM’s

option-characteristics and stock’s idiosyncratic risk factors are progressively added into the cross-

sectional regression model. We observe that in most cases, including control variables does not affect

the statistical significance of the moment-based predictor estimated from the CGP-based RND.

The only exception is column (4) for SkewQ where all control variables are included jointly. This

indicates that estimating moment-based predictors using the CGP-based RND unlocks significant

information for cross-sectional stock returns, which is orthogonal to the stock information from

historical data and the BKM’s model-free risk-neutral moments from option prices.

[ Insert Table 21 about here ]

5.5 Capturing Earning Announcement Information

Earning announcement of a firm is considered as an information-intensive event for its stock

returns. Empirical studies such as Diavatopoulos et al. (2012), Atilgan (2014), Dubinsky et al.

(2018) and Lei et al. (2020) document strong return predictability during the earning announcement

dates (EAD) due to informed trading of individual stock options. In this section, we inspect whether
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such predictive information for stock returns can be captured by the stock-level model-free RND.

We employ AV ARQ as a predictor to capture the option-based predictive information around EAD.

The use of AV ARQ shares the rationale of the stock’s IV spread as in Atilgan (2014). If investors

have private information about future stock price increases (decreases), then call (put) options will

be increasingly demanded, which will drive the IVs from call (put) options up. Since the CGP-

based RND has the advantage of sourcing information from both the call and the put options for

a stock, the AV ARQ is able to encode the spread of investor’s positive and negative sentiment by

construction.

5.5.1 OLS With Selected Stocks

We investigate whether there is anticipated information from options for the stock return rEAD
i

around EAD for stock i with the OLS model as follows:

rEAD
i,t = α0 + α1∆

t−d
−30AV ARQ

i + ϵt, (33)

where rEAD
i,t is the cumulative stock return from time t − d + 1 to time t + 1 which is around

the earning announcement date at t of stock i, and ∆t−d
−30AV ARQ

i denotes the innovation of the

stock’s asymmetry of implied variance from time t − 30 to time t − d. d is a constant that de-

cides the time window to calculate the innovation of the asymmetry of implied variance. We

consider d = 20 and d = 5. When d = 20, we calculate the innovation of the asymmetry of

implied variance ∆t−20
−30 AV ARQ

i = AV ARQ
i,t−20 − AV ARQ

i,t−30, which uses more remote implied

information in stock options from the earning announcement time t. When d = 5 we calculate

∆t−5
−30AV ARQ

i = AV ARQ
i,t−5 − AV ARQ

i,t−30, which instead uses implied information more near to

the earning announcement time t. The cumulative stock return rEAD
i,t is measured immediately

after the formation of ∆t−d
−30AV ARQ

i to avoid the overlapping of information.

[ Insert Table 22 about here ]

We first test whether the RND-based asymmetry of variance estimations using the no-arbitrage

constrained GP can predict the EAD return of on a selected subsample of stocks. The stocks are

chosen randomly, with a focus on diversified industries including technology, healthcare, financial

and industrial. For each industry group, we choose 4 stocks. There are 16 different stocks in total in

the subsample. The time-series OLS model in (33) is estimated for each of the 16 individual stocks.
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Table 22 shows the result for stock-level time-series OLS regressions. We report the coefficient and

the associated t-statistic for the innovation of the asymmetry of implied variance estimations for

each stock-level regression. The left column and the right column under the section of each RND-

recovery method correspond to the case of d = 20 and d = 5. For the CGP-based RND recovery,

we observe the most individual OLS regressions where ∆t−d
−30AV ARQ

i is statistically significant at

least at the 10% significance level. When d = 20, there are 16 out of 16 individual regressions

that are statistically significant, and when d = 5, there are 9 out of 16 individual regressions that

are statistically significant. This percentage of statistically significant regressions from the CGP-

based stock-level RND is much higher than the percentages from other RND-recovery methods

we consider, which highlights the superior capability of the CGP-based RND-recovery in encoding

predictive information for stock returns, particularly when there is important information to release

to the market.

5.5.2 OLS With Panel of Stocks

We continue to investigate whether the predictive information for stock returns around the

EAD captured by the innovation of the asymmetry of implied variance still exists in a wider panel

of stocks. We estimate a panel OLS model with a cross-section of stocks from stock i to stock N ,

spanning the observed earning announcement time t = {t0, t1, · · · , tq} for each stock, where t0 is

the first EAD and tq is the last EAD within the considered time period. The panel OLS model is

as follows:

rEAD
it = α0 + α1∆

t−d
−30AV ARit + ϵit. (34)

[ Insert Table 23 about here ]

The same cross-section of stocks as in previous sections is used to estimate model (34). Table 23

shows the result for the panel OLS regressions. Again, we report the coefficient and the associated

t-statistic for the innovation of the asymmetry of implied variance estimations across the cross-

section of stocks. In Panel A, we present the result of a full-time-period panel OLS with the time

period covering from Jan 1996 to Dec 2022. We observe that the estimated ∆t−d
−30AV ARQ

it from the

CGP-based RND is a statistically significant predictor for EAD stock returns, for both the case of

d = 20 and d = 5. At the same time, the estimated ∆t−d
−30AV ARQ

it from the IVGEV-based RND

exhibits the closest performance as it is also statistically significant to predict EAD stock returns.
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Other considered RND-recovery methods fail to capture this predictive information with the RND-

based ∆t−d
−30AV ARQ

it estimations. We further split the entire time period into a pre-crisis sub-period

covering the time from Jan 1996 to Jan 2007 and a post-crisis sub-period covering the time from

Jan 2007 to Dec 2022, to examine whether the informativeness of the IVGEV-based ∆t−d
−30AV ARQ

it

and the CGP-based ∆t−d
−30AV ARQ

it diverges in the two sub-periods. The Panel B shows the panel

OLS regression result for the pre-crisis sub-period. Only the IVGEV-based ∆t−d
−30AV ARQ

it captures

the predictive information for the EAD stock returns when d = −5. Panel C shows the panel

OLS regression result for the post-crisis period, where we observe that the informativeness of the

CGP-based∆t−d
−30AV ARQ

it outperforms that of the IVGEV-based∆t−d
−30AV ARQ

it. Since a statistically

significant∆t−d
−30AV ARQ

it to predict the EAD stock returns is observed for d = −20 and d = −5 when

using the CGP-based RND, while a strong predictor for the EAD stock returns is only observed

for d = 20 when using the IVGEV-based RND.

6 Conclusion

Using the empirical context of risk assessment and return prediction as the proving ground, we

perform a comprehensive analysis of the capability of our proposed consGP model, as an economics-

aware machine, in learning the predictive information from stock options. Learning from stock

options is challenging due to the limitations of small and noisy observations. Our findings demon-

strate that when embedded with domain knowledge, data-driven machine learning method can

help to decode economic information when the financial data is small-sized and noisy, in which

case structural models would typically fail as model parameters can not be accurately calibrated.

Our paper also provides a general framework to estimate implied risk metrics. Based on the

nonparametric no-arbitrage option pricing relation learned with the consGP model, we further

recover a hybrid model-free RND implied in options that incorporates the information from calls

and puts jointly. The recovered RND allows investors to estimate a wider range of risk metrics

for returns than in the literature. Enforced with the no-arbitrage constraints from the domain

knowledge of option pricing, the consGP-based RND shows lower density loss while ensuring the

regularity conditions of probability density, which is essential for reliable risk metric estimations.

We evaluate our method with a series of risk forecasting and asset pricing tests. The out-of-

sample predictive power of the tail risk measures estimated from the consGP-based RND is in

average 3.92 times higher than those estimated from traditional RND-recovery approaches. When

31



using the recovered stock-level RND to estimate moment-based factors for stock returns and form

long-short portfolios, our consGP-based method provides 4.30 times higher Sharpe ratio in average

than others. The enhanced predictive information and the tangible economic benefits unlocked

by the economics-aware consGP model support that both fitting to observations and adhering to

fundamental economic principles are necessary to learn from financial data under small-sample and

noisy conditions.

The overall success of enforcing option pricing domain knowledge to GPs for nonparametrically

learning the no-arbitrage pricing relation and deriving the model-free RND brings promise for

option pricing when there is no luxury of noiseless option observations to estimate parametric

models which, in addition, also suffer from model-specification errors across the time-series and the

cross-section of assets. Potential further research includes extending the machine learning model

to high-dimensional so that the prior knowledge with respect to different features can be addressed

and multivariate option characteristics can be incorporated.
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Appendix A Heston (1993) Model Implementation

The characteristic function. To derive the theoretical RND fQ
Heston(ST |St) from the Heston

(1993) model, the first step is to obtain the characteristics function for the log-price log(ST ).

Throughout the paper, we use the modified characteristic function of log(ST ) for Heston (1993)

model as proposed in Schoutens et al. (2003) (henceforth, WEJ characteristic function). This

characteristic function is equivalent to the original one as in Heston (1993) but is easier to evaluate.

The WEJ characteristic function is defined as follows:

ϕ (u;St, v0, t, T ) =EQ
[
eiu log(ST )

∣∣∣∣St, v0

]
(35)

=exp (iu (log(St) + rτ)) (36)

× exp
(
θκσ−2

(
(κ− ρσui− d) τ − 2 log

((
1− ge−dτ

)/
(1− g)

)))
(37)

× exp
(
v0σ

−2 (κ− ρσiu− d)
(
1− e−dτ

)/(
1− ge−dτ

))
, (38)

where

d =
(
(ρσui− κ)2 − σ2

(
−iu− u2

))1/2
(39)

g = (κ− ρσui− d)
/
(κ− ρσui+ d) (40)

τ = T − t. (41)

Inverse Fourier transform. Given the characteristic function of log(ST ), the density function

can be then calculated by taking the inverse Fourier transform:

fX(x) =
1

2π

∫
R
e−iuxϕX(u)du, (42)

where x := log(ST ). We rely on Gil-Pelaez (1951) formula to calculate the inversion of the Fourier

transform more efficiently. The cumulative density function can be obtained using the following

Fourier inversion:

FX(x) = P(X < x) =

∫ x

−∞
fX(t)dt (43)

=
1

2
− 1

2π

∫
R

e−iuxϕX(u)

iu
du, (44)
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which can be written as follows according to Gil-Pelaez (1951):

FX(x) =
1

2
− 1

2π

∫
R
e−iuxϕX(u) · 1

iu
du (45)

=
1

2
−
(

1

2π

∫ 0

−∞
e−iuxϕX(u)

1

iu
du+

1

2π

∫ ∞

0
e−iuxϕX(u)

1

iu
du

)
(46)

=
1

2
− 1

2π

∫ ∞

0

(
−eiuxϕX(−u) + e−iuxϕX(u)

) 1

iu
du (47)

=
1

2
− 1

π

∫ ∞

0
Re

[
e−iuxϕX(u)

iu

]
du. (48)

Taking the derivative leads to the Gil-Pelaez (1951) representation of the density function:

fX(x) =
1

π

∫ ∞

0
Re
[
e−iuxϕX(u)

]
du. (49)

Option pricing via Fourier inversion. The pricing formula for an European call option

with strike K and maturity T can be written as:

C(St, r,K, t, T ) = StQ̃ (ST > K)− e−r(T−t)KQ (ST > K) , (50)

where Q̃ is the probability under the stock numéraire and Q is the probability under the money

market numéraire. The probability Q̃ and Q can be expressed as follows in terms of the Gil-Pelaez

(1951) formula:

Q̃(ST > K) =
1

2
+

1

π

∫ ∞

0
Re

[
e−iukϕ̃X(u)

iu

]
du (51)

=
1

2
+

1

π

∫ ∞

0
Re

[
e−iukϕX(u− i)

iuϕX(−i)

]
du, (52)

and

Q(ST > K) = 1−Q(ST < K) = 1−Q(XT < k) (53)

=
1

2
+

1

π

∫ ∞

0
Re

[
e−iukϕX(u)

iu

]
du, (54)

where k := log(ST /St) and

ϕ̃X(u) := EQ̃ [eiuXT
]
= EQ

[
dQ̃
dQ

eiuXT

]
(55)
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= EQ
[

Ste
XT

StEQ[eXT ]
eiuXT

]
(56)

= EQ

[
e(iu+1)XT

ϕX(−i)

]
(57)

=
ϕX(u− i)

ϕX(−i)
. (58)

The corresponding European put option prices can then be calculated with the well-known

put-call parity given the call prices obtained using the option pricing via Fourier inversion with the

Gil-Pelaez (1951) formula.

Appendix B Stock and Option Data Selection Criteria

We select stocks that are included in the S&P 500 index on the first trading date of each year

from 1996 to 2022. The selected stocks are held fixed throughout each year. We then discard stocks

whose options are inactively traded, that is we only include stocks for which there are options traded

for more than 200 days in a year.

For each stock on each day and for each time-to-maturity, we include stock options with strike

prices less than 2×Ste
rτ . This is because that we estimate the RND over the rangeK ∈ [0, 2× Ste

rτ ]

for all stocks. We exclude stock options with zero trading volume and open interest at the same

time. We exclude stock options with zero best-bid price. We do not estimate the RND when the

number of call and put options is less than 5.

Appendix C Goodness-of-fit of Quantile Regression

We follow Koenker and Machado (1999) to calculate R1 which is a goodness-of-fit measure for

quantile regression analogous to the conventional R2 for ordinary least squares regression. Consider

a linear conditional quantile model:

Qyi (τ |x) = x⊤
i1β1(τ) + x⊤

i2β2(τ), (59)

where x⊤
i,1 is a vector of ones and x⊤

i2 denotes all other regressors. Let β̂(τ) denote the minimizer

of the full quantile model

V̂ (τ) = argmin
b∈Rp

∑
ρτ

(
yi − x⊤

i b
)
, (60)
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and let β̃(τ) =
[
β̃1(τ)

⊤,0⊤
]
denotes the minimizer of the corresponding restricted quantile model

Ṽ (τ) = argmin
b1∈Rp−q

∑
ρτ

(
yi − x⊤

1ib1

)
. (61)

ρτ (·) is the quantile-weighted absolute value of errors according to Koenker and Bassett (1978).

That is, β̂(τ) and β̃(τ) denote the estimated coefficients of the full and the restricted quantile

regression model. V̂ (τ) and Ṽ (τ) denote the quantile-weighted absolute value of errors calculated

from the full and the restricted model respectively. The goodness-of-fit criterion is then defined as

R1(τ) = 1− V̂ (τ)/Ṽ (τ). (62)
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Tables
Table 1: Summary statistics for stock options of S&P 500 constituent stocks. This table describes the stock options that we use in our empirical
analysis. We report the average number of traded option contracts, the average time-to-maturity (in calendar days), the minimum, median, maximum and mean
option moneyness (moneyness is defined as K/St), the mean option trading volume, and the mean option open interest. To understand the degree of tail risk
encoded in raw stock options, we follow Barone-Adesi (2016) to calculate αQ which is the implied cumulative probability at a given strike level. We calculate αQ

at the second to the lowest strike price, which is reported as the minimum αQ in this table. A larger minimum αQ means a less-complete RND implied in raw
options, and a smaller minimum αQ means a more-complete RND implied in raw options. The mean stock trading volume and the mean firm’s capitalization are
also reported. All statistics are calculated per stock-day at the end of each month from Jan 1996 to Dec 2022 by averaging across all time-to-maturity available.

Small Small-Medium Medium-Large Large
Call Put Overall Call Put Overall Call Put Overall Call Put Overall

Average number of contracts 8.74 8.95 17.69 11.58 11.52 23.10 14.04 13.97 28.01 20.77 20.74 41.51
Average time-to-maturity ⧸ ⧸ 105.75 ⧸ ⧸ 101.24 ⧸ ⧸ 96.40 ⧸ ⧸ 93.17
Minimum moneyness 0.71 0.73 0.66 0.73 0.74 0.68 0.72 0.72 0.66 0.68 0.69 0.63
Median moneyness 1.00 1.01 1.00 0.99 0.97 0.97 0.98 0.96 0.96 0.97 0.95 0.96

Maximum moneyness 1.29 1.33 1.38 1.24 1.24 1.29 1.23 1.23 1.28 1.26 1.26 1.31
Mean moneyness 1.00 1.01 1.01 0.99 0.97 0.98 0.98 0.96 0.97 0.98 0.96 0.96

Mean option volume 43.75 30.81 37.28 40.78 28.62 34.70 61.87 41.62 51.75 150.06 94.61 122.33
Mean option open interest 835.98 708.31 772.14 797.12 656.01 726.57 1076.87 866.86 971.87 2531.04 2036.63 2283.83

Minimum αQ ⧸ 23.30% ⧸ ⧸ 14.85% ⧸ ⧸ 10.37% ⧸ ⧸ 6.63% ⧸
Mean stock volume ⧸ ⧸ 14.56 ⧸ ⧸ 14.67 ⧸ ⧸ 15.02 ⧸ ⧸ 15.81

Mean firm size ⧸ ⧸ 15.60 ⧸ ⧸ 16.57 ⧸ ⧸ 17.35 ⧸ ⧸ 18.67
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Table 2: Stock-level predictive quantile regressions in time-series. Time-series stock-level quantile re-
gressions of weekly stock return over the lagged implied VaR (Mt = V aRQ

t ), stock-based VaR and other control
variables. Figures in the upper panel represent the percentage of firm-regressions where the VaR metric is significant,
across different significance levels. Volatility measures in BKM* and Idiosyn* are orthogonalized to the risk metric
to address the multicollinearity issue.

p−value Option Stock Option+Stock Firm-chara BKM* Idiosyn* Raw
≤ 10% 82.67 66.79 76.53/25.99 77.26 77.44 71.84 45.13
≤ 5% 79.42 61.37 71.30/18.59 73.10 72.38 66.43 36.64
≤ 1% 70.58 51.81 62.82/9.57 65.34 60.65 58.30 23.83
No. of firms 554 554 554 551 551 551 551
Average firm-week obs. 532 532 532 531 531 531 531
Average R1 4.99% 2.59% 5.62% 7.04% 8.89% 10.14% 10.15%

Table 3: Stock-level predictive quantile regressions in time-series. Mt = ESQ
t .

p−value Option Stock Option+Stock Firm-chara BKM* Idiosyn* Raw
≤ 10% 83.03 65.52 75.63/27.62 77.62 77.98 72.92 42.42
≤ 5% 78.89 60.29 70.76/20.94 73.10 73.83 68.95 35.56
≤ 1% 71.12 51.62 63.18/9.75 65.52 63.54 59.93 22.56
No. of firms 554 554 554 551 551 551 551
Average firm-week obs. 532 532 532 531 531 531 531
Average R1 5.05% 2.53% 5.70% 7.10% 8.88% 10.17% 10.18%

Table 4: Stock-level predictive quantile regressions in time-series. Mt = LPMQ
t .

p−value Option Stock Option+Stock Firm-chara BKM* Idiosyn* Raw
≤ 10% 81.77 60.29 77.44/27.08 79.06 76.53 71.30 37.00
≤ 5% 75.99 54.51 72.56/18.77 73.29 71.66 65.88 29.96
≤ 1% 68.23 44.40 64.98/9.21 65.16 61.01 57.58 17.87
No. of firms 554 554 554 551 551 551 551
Average firm-week obs. 532 532 532 531 531 531 531
Average R1 4.79% 2.21% 5.45% 6.93% 8.79% 10.05% 10.07%
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Table 5: The Summary Statistics of the In-Sample and Out-Of-Sample R1 Distribution for Implied Tail Risk Metrics Across Stocks. The
in-sample and out-of-sample R1 of stock-level univariate quantile regressions across all stocks using different RND-recovery methods. There are 516 different
stocks in this test. All figures are in percentage. The conclusion will not change with winsorization.

Constant GEV SVI CGP
In-Sample Out-Of-Sample In-Sample Out-Of-Sample In-Sample Out-Of-Sample In-Sample Out-Of-Sample

Panel A: Implied VaR
Min 0.0 -38.05 0.0 -36.15 0.0 -63.31 0.0 -58.86
25% 1.75 -0.5 1.69 -0.53 1.09 -0.95 2.11 -0.15
50% 4.55 2.16 4.27 1.56 2.94 0.91 5.02 2.41
75% 7.32 5.25 6.9 5.38 5.61 3.33 7.81 5.71
Max 25.59 40.19 26.77 37.09 23.86 36.02 34.18 44.81
Std 4.26 6.83 4.34 6.73 3.93 6.35 4.71 7.38
Mean 5.21 2.69 5.02 2.34 4.03 1.42 5.78 3.14

Panel B: Implied ES
Min 0.0 -97.43 0.0 -533.8 0.0 -253.99 0.0 -67.89
25% 1.72 -1.61 0.94 -1.35 0.09 -1.62 2.37 -0.72
50% 4.39 0.99 3.21 0.68 0.32 -0.23 5.07 2.14
75% 7.07 4.44 5.6 3.71 0.77 0.41 7.83 5.5
Max 37.04 37.9 15.23 28.78 5.64 30.16 30.87 43.12
Std 4.32 10.43 3.1 26.11 0.84 12.9 4.55 8.3
Mean 5.01 0.56 3.71 -1.38 0.63 -1.87 5.74 2.52

Panel C: Implied LPM
Min 0.0 -55.62 0.0 -30.0 0.0 -49.97 0.0 -56.55
25% 1.66 -0.79 1.51 -0.75 0.09 -1.27 2.14 -0.22
50% 4.0 2.1 3.77 1.86 0.34 -0.22 4.47 2.31
75% 6.78 5.05 6.87 4.8 0.89 0.36 7.41 5.36
Max 30.29 45.35 24.72 29.11 7.62 10.31 40.75 47.54
Std 4.57 7.64 4.31 6.17 0.91 4.18 4.84 7.08
Mean 5.06 2.43 4.84 2.04 0.65 -1.06 5.46 2.91
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Table 6: Fixed effects panel quantile regressions of Machado and Silva (2019): stock returns with the implied VaR from the CGP-based
stock-level RND.Panel quantile regression with fixed effects of weekly stock returns over the lagged implied VaR, stock-based VaR and other control variables.
Ivol⊥ and Idiovol⊥ are orthogonalized variables to the implied VaR.

Option Stock Option+Stock Firm-chara BKM* Idiosyn* Raw
V aRQ -2.854*** -2.826*** -3.143*** -3.092*** -3.049*** -2.254***

(-18.79) (-29.33) (-36.01) (-36.59) (-4.84) (-14.63)
V aRP -0.915*** -0.023

(-18.26) (0.51)
Betamkt 0.003*** 0.004*** 0.002 0.003***

(2.61) (3.00) (0.22) (2.87)
Coskew 0.012*** 0.011*** 0.010 0.010***

(9.79) (8.87) (1.00) (8.46)
Size -0.006*** -0.004*** -0.003 -0.003***

(-9.08) (-6.04) (-0.69) (-5.60)
Ivol -0.065***

(-8.54)
Ivol⊥ -0.059*** -0.062

(-7.54) (-1.01)
Iskew 0.000 0.000 0.000

(-1.07) (-0.13) (-1.09)
Ikurt 0.000 0.000 0.000

(0.94) (0.12) (1.00)
Idiovol 0.022***

(3.74)
Idiovol⊥ 0.022

(0.75)
Idioskew 0.000 0.000***

(0.30) (2.84)
Firm-Week Obs. 301,040 301,040 301,040 300,727 300,72 300,727 300,727
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Table 7: Fixed effects panel quantile regressions of Machado and Silva (2019): stock returns with the implied ES from the CGP-based
stock-level RND. Panel quantile regression with fixed effects of weekly stock returns over the lagged implied ES, stock-based ES and other control variables.
Ivol⊥ and Idiovol⊥ are orthogonalized variables to the implied ES.

Option Stock Option+Stock Firm-chara BKM* Idiosyn* Raw
ESQ -2.315*** -2.234*** -2.483*** -2.448*** -2.421*** -1.579***

(-35.88) (-21.04) (-29.50) (-49.38) (-15.68) (-16.81)

ESP -0.586*** -0.0556
(-16.41) (-1.18)

Betamkt 0.0020 0.0026*** 0.0014 0.0029***
(1.26) (2.77) (0.45) (3.30)

Cskew 0.0118*** 0.0106*** 0.0095*** 0.0096***
(7.20) (10.78) (2.93) (10.15)

Size -0.0041*** -0.0027*** -0.0022 -0.0023***
(-5.10) (-5.32) (-1.30) (-4.66)

Ivol -0.0736***
(-11.09)

Ivol⊥ -0.0634*** -0.0674***
(-9.87) (-3.10)

Iskew -0.0002 -0.0002 -0.0002
(-1.15) (-0.34) (-1.15)

Ikurt 0.0000 0.0000 0.0000
(1.10) (0.34) (1.13)

Idiovol 0.0098**
(2.12)

Idiovol⊥ 0.0277*
(1.70)

Idioskew 0.0004 0.0005***
(0.91) (3.49)

Firm-Week Obs. 301,040 301,040 301,040 300,727 300,727 300,727 300,727
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Table 8: Fixed effects panel quantile regressions of Machado and Silva (2019): stock returns with the implied LPM from the CGP-based
stock-level RND. Panel quantile regression with fixed effects of weekly stock returns over the lagged implied LPM, stock-based LPM and other control variables.
Ivol⊥ and Idiovol⊥ are orthogonalized variables to the implied LPM.

Option Stock Option+Stock Firm-chara BKM* Idiosyn* Raw
LPMQ -18.28*** -18.97*** -19.78*** -19.45*** -19.35*** -12.05***

(-43.55) (-36.40) (-42.17) (-42.59) (-41.88) (-14.83)

LPMP -0.0033*** 0.0004**
(-23.50) (2.49)

Betamkt 0.0026*** 0.0033*** 0.0026*** 0.0036***
(3.00) (3.80) (2.97) (4.20)

Coskew 0.0122*** 0.0108*** 0.0103*** 0.0103***
(13.50) (11.86) (10.95) (10.94)

Size -0.0044*** -0.0029*** -0.0026*** -0.0027***
(-9.89) (-5.91) (-5.26) (-5.33)

Ivol -0.0710***

Ivol⊥ -0.0671*** -0.0698***
(-11.64) (-11.25)

Iskew -0.0002 -0.0002 -0.0002
(-1.16) (-1.12) (-1.11)

Ikurt 0.0000 0.0000 0.0000
(1.19) (1.17) (1.15)

Idiovol -0.0010
(-0.22)

Idiovol⊥ 0.0120**
(2.55)

Idioskew 0.0005*** 0.0005***
(3.40) (3.63)

Firm-Week Obs. 301,040 301,040 301,040 300,727 300,727 300,727 300,727
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Table 9: Fama and MacBeth (1973) Cross-Sectional Regressions: NCSKEWi,t:t+6mo. Fama and MacBeth
(1973) cross-sectional regressions of NCSKEWt,t:t+6mo. t-statistics are adjusted according to Newey and West (1987)
with 12 lags.

Option Firm-chara BKM* Idiosyn* Raw
V aRQ -13.90*** -14.27*** -12.00*** -10.51** -8.089*

(-5.90) (-3.49) (-3.04) (-2.46) (-1.69)
Betamkt 0.008 0.006 -0.001 0.009

(0.18) (0.14) (-0.03) (0.19)
Coskew 0.053 0.086 0.146 0.136

(0.46) (0.76) (1.22) (1.16)
Size -0.002 -0.007 -0.005 0.003

(-0.10) (-0.38) (-0.24) (0.17)
Ivol -0.302*

(-1.97)
Ivol⊥ -0.013 0.052

(-0.08) (0.35)
Iskew -0.035*** -0.030** -0.031**

(-3.09) (-2.47) (-2.36)
Ikurt 0.001 0.001 0.000

(0.47) (0.31) (0.06)
Idiovol 0.200

(0.65)
Idiovol⊥ -0.284

(-0.69)
Idioskew -0.003 -0.003

(-0.27) (-0.26)
α0 0.174*** 0.170 0.138 0.107 0.007

(3.17) (0.65) (0.52) (0.39) (0.03)
Firm-Month Obs. 47,861 47,813 47,813 47,813 47,813
adj. R2 1.10% 2.30% 2.40% 3.00% 3.10%
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Table 10: Fama and MacBeth (1973) Cross-Sectional Regressions: NCSKEWi,t:t+6mo. Fama and MacBeth
(1973) cross-sectional regressions of NCSKEWt,t:t+6mo. t-statistics are adjusted according to Newey and West (1987)
with 12 lags.

Option Firm-chara BKM* Idiosyn* Raw
ESQ -10.5500*** -9.7500*** -8.1780*** -7.3130** -3.4990

(-5.57) (-3.08) (-2.64) (-2.17) (-1.07)
Betamkt -0.0065 0.0011 -0.0038 -0.0002

(-0.15) (0.03) (-0.08) (-0.00)
Coskew 0.0497 0.0831 0.1490 0.1420

(0.45) (0.75) (1.27) (1.22)
Size 0.0018 -0.0046 -0.0033 0.0055

(0.10) (-0.24) (-0.17) (0.27)
Ivol -0.3920**

(-2.45)
Ivol⊥ -0.1090 -0.0214

(-0.62) (-0.13)
Iskew -0.0409*** -0.0352*** -0.0328**

(-3.55) (-2.85) (-2.43)
Ikurt 0.0010 0.0006 0.0000

(0.31) (0.17) (0.00)
Idiovol 0.1280

(0.44)
Idiovol⊥ -0.3270

(-0.84)
Idioskew -0.0026 -0.0028

(-0.22) (-0.24)
α0 0.1980*** 0.1370 0.1020 0.0890 -0.0256

(3.26) (0.52) (0.39) (0.32) (-0.09)
Firm-Month Obs. 47,861 47,813 47,813 47,813 47,813
adj. R2 1.10% 2.20% 2.40% 3.00% 3.00%
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Table 11: Fama and MacBeth (1973) Cross-Sectional Regressions: NCSKEWi,t:t+6mo. Fama and MacBeth
(1973) cross-sectional regressions of NCSKEWt,t:t+6mo. t-statistics are adjusted according to Newey and West (1987)
with 12 lags.

Option Firm-chara BKM* Idiosyn* Raw
LPMQ -96.75*** -87.82*** -80.68*** -69.36** -37.69

(-5.29) (-3.10) (-2.92) (-2.36) (-1.25)
Betamkt -0.0125 -0.0007 -0.0047 0.0030

(-0.29) (-0.02) (-0.10) (0.07)
Coskew 0.0512 0.0831 0.147 0.140

(0.46) (0.73) (1.22) (1.21)
Size 0.0048 -0.0030 -0.0012 0.0063

(0.27) (-0.16) (-0.06) (0.31)
Ivol -0.386**

(-2.31)
Ivol⊥ -0.203 -0.125

(-1.56) (-1.01)
Iskew -0.0377*** -0.0322*** -0.0302**

(-3.20) (-2.63) (-2.32)
Ikurt 0.0017 0.0014 0.0008

(0.55) (0.43) (0.23)
Idiovol 0.144

(0.52)
Idiovol⊥ -0.381

(-1.06)
Idioskew -0.0044 -0.0027

(-0.39) (-0.24)
α0 0.0494 -0.0199 -0.0155 -0.0330 -0.0865

(1.13) (-0.09) (-0.07) (-0.14) (-0.31)
Firm-Month Obs. 47,861 47,813 47,813 47,813 47,813
adj. R2 1.20% 2.40% 2.50% 3.00% 3.30%
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Table 12: Fama and MacBeth (1973) Cross-Sectional Regressions: DUV OLi,t:t+6moFama and MacBeth
(1973) cross-sectional regressions of DUVOLt,t:t+6mo. t-statistics are adjusted according to Newey and West (1987)
with 12 lags.

Option Firm-chara BKM* Idiosyn* Raw
V aRQ -6.824*** -6.270*** -5.414*** -4.908*** -3.806***

(-8.02) (-4.54) (-4.04) (-3.28) (-3.45)
Betamkt -0.003 -0.003 -0.006 -0.003

(-0.16) (-0.16) (-0.29) (-0.16)
Coskew -0.023 -0.017 0.002 0.000

(-0.52) (-0.39) (0.04) (0.00)
Size 0.001 -0.001 0.000 0.003

(0.17) (-0.18) (-0.07) (0.44)
Ivol -0.127**

(-2.56)
Ivol⊥ -0.035 -0.019

(-0.69) (-0.42)
Iskew -0.016*** -0.015*** -0.015***

(-4.48) (-4.20) (-4.12)
Ikurt 0.000 0.000 0.000

(0.28) (0.14) (-0.15)
Idiovol 0.075

(0.71)
Idiovol⊥ -0.063

(-0.55)
Idioskew -0.001 0.000

(-0.21) (-0.09)
α0 0.122*** 0.095 0.080 0.070 0.032

(4.60) (1.07) (0.91) (0.74) (0.32)
Firm-Month Obs. 47,861 47,813 47,813 47,813 47,813
adj. R2 2.50% 4.80% 5.10% 5.70% 6.10%
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Table 13: Fama and MacBeth (1973) Cross-Sectional Regressions: DUV OLi,t:t+6moFama and MacBeth
(1973) cross-sectional regressions of DUVOLt,t:t+6mo. t-statistics are adjusted according to Newey and West (1987)
with 12 lags.

Option Firm-chara BKM* Idiosyn* Raw
ESQ -5.497*** -4.887*** -4.289*** -3.962*** -2.773***

(-8.26) (-4.61) (-4.13) (-3.42) (-3.37)
Betamkt -0.0037 -0.0010 -0.0029 -0.0033

(-0.21) (-0.05) (-0.15) (-0.17)
Coskew -0.0232 -0.0174 0.0025 0.0027

(-0.54) (-0.40) (0.06) (0.06)
Size 0.0018 -0.0007 -0.0004 0.0032

(0.33) (-0.12) (-0.06) (0.49)
Ivol -0.136***

(-2.62)
Ivol⊥ -0.0546 -0.0329

(-0.89) (-0.59)
Iskew -0.0177*** -0.0166*** -0.0155***

(-4.96) (-4.68) (-4.36)
Ikurt 0.0001 -0.0000 -0.0002

(0.12) (-0.00) (-0.18)
Idiovol 0.0633

(0.61)
Idiovol⊥ -0.0705

(-0.66)
Idioskew -0.0005 -0.0002

(-0.15) (-0.06)
α0 0.142*** 0.0986 0.0851 0.0785 0.0350

(5.03) (1.12) (0.97) (0.83) (0.36)
Firm-Month Obs. 47,861 47,813 47,813 47,813 47,813
adj. R2 2.40% 4.60% 5.10% 5.60% 6.00%
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Table 14: Fama and MacBeth (1973) Cross-Sectional Regressions: DUV OLi,t:t+6moFama and MacBeth
(1973) cross-sectional regressions of DUVOLt,t:t+6mo. t-statistics are adjusted according to Newey and West (1987)
with 12 lags.

Option Firm-chara BKM* Idiosyn* Raw
LPMQ -52.43*** -45.94*** -42.24*** -38.49*** -29.88***

(-7.84) (-4.68) (-4.35) (-3.70) (-3.38)
Betamkt -0.0056 -0.0016 -0.0036 -0.0038

(-0.31) (-0.08) (-0.19) (-0.20)
Coskew -0.0234 -0.0170 0.0021 0.0024

(-0.54) (-0.38) (0.05) (0.05)
Size 0.0032 0.0002 0.0007 0.0038

(0.59) (0.03) (0.12) (0.59)
Ivol -0.124**

(-2.34)
Ivol⊥ -0.0760 -0.0567

(-1.56) (-1.40)
Iskew -0.0167*** -0.0157*** -0.0146***

(-4.47) (-4.30) (-4.16)
Ikurt 0.0003 0.0002 0.0001

(0.41) (0.29) (0.15)
Idiovol 0.0780

(0.75)
Idiovol⊥ -0.0832

(-0.86)
Idioskew -0.0010 0.00002

(-0.30) (0.01)
α0 0.0665*** 0.0204 0.0203 0.0136 -0.0118

(3.18) (0.26) (0.26) (0.16) (-0.12)
Firm-Month Obs. 47,861 47,813 47,813 47,813 47,813
adj. R2 2.60% 4.90% 5.20% 5.70% 6.20%
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Table 15: Fama and MacBeth (1973) Cross-Sectional Regressions: CRASHi,t:t+T with V aRQ Generated From Different RND-recovery Methods
and Across Multiple Horizons. The results of Fama and MacBeth (1973) cross-sectional regressions of CRASHt,t:t+T across 1-month, 3-month and 6-month
horizons, over the lagged implied VaR from different RND-recovery methods.

Constant GEV SVI CGP
1mo 3mo 6mo 1mo 3mo 6mo 1mo 3mo 6mo 1mo 3mo 6mo

Panel A: NCSKEW
Model 1 -2.19 -5.87 -6.71 -2.21 -5.81 -6.29 -2.27 -5.79 -6.03 -2.02 -5.35 -5.90
Model 2 -2.75 -3.63 -3.45 -2.74 -3.83 -3.82 -1.80 -3.60 -3.01 -3.22 -3.72 -3.49
Model 3 -1.81 -2.36 -2.81 -1.82 -2.73 -3.30 -1.60 -2.81 -2.71 -2.27 -2.83 -3.04
Model 4 -2.15 -2.40 -2.34 -2.16 -2.91 -2.96 -2.17 -3.22 -2.68 -2.42 -2.68 2.46
Model 5 -2.00 -2.28 -2.19 -2.48 -2.25 -1.84 -1.41 -2.71 -1.67 -1.98 -1.78 -1.69

R2 2.36% 2.40% 2.28% 3.68% 2.50% 2.38% 3.38% 2.20% 2.14% 3.98% 2.62% 2.38%
Panel B: DUVOL

Model 1 -4.74 -7.39 -8.35 -5.52 -8.33 -9.26 -4.60 -6.72 -7.71 -5.44 -7.61 -8.02
Model 2 -2.93 -4.24 -4.40 -3.62 -4.88 -5.29 -2.28 -3.41 -3.53 -4.07 -4.72 -4.54
Model 3 -2.60 -3.40 -3.67 -2.88 -4.00 -4.46 -2.23 -3.08 -3.12 -3.31 -3.99 -4.04
Model 4 -2.66 -3.21 -3.08 -2.94 -3.80 -3.78 -2.45 -3.10 -2.86 -3.10 -3.60 -3.28
Model 5 -1.70 -2.80 -3.40 -2.76 -2.97 -3.11 1.09 -2.21 -1.77 -2.63 -2.93 -3.45

R2 2.48% 3.66% 4.66% 2.48% 3.72% 4.74% 2.30% 3.40% 4.42% 2.76% 3.94% 4.84%
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Table 16: Fama and MacBeth (1973) Cross-Sectional Regressions: CRASHi,t:t+T with ESQ Generated From Different RND-recovery Methods
and Across Multiple Horizons. The results of Fama and MacBeth (1973) cross-sectional regressions of CRASHt,t:t+T across 1-month, 3-month and 6-month
horizons, over the lagged implied ES from different RND-recovery methods.

Constant GEV SVI CGP
1mo 3mo 6mo 1mo 3mo 6mo 1mo 3mo 6mo 1mo 3mo 6mo

Panel A: NCSKEW
Model 1 -2.04 -4.87 -6.05 -2.28 -4.07 -5.28 -0.66 0.22 -0.11 -1.7 -4.88 -5.57
Model 2 -2.46 -2.77 -2.96 -2.73 -2.58 -2.96 -0.57 -0.36 -0.71 -2.46 -3.03 -3.08
Model 3 -1.76 -2.17 -2.6 -2.23 -1.96 -2.78 -0.78 -0.12 -0.41 -1.58 -2.19 -2.64
Model 4 -2.03 -2.28 -2.28 -2.52 -2.3 -2.85 -0.58 0.09 -0.53 -1.8 -2.15 -2.17
Model 5 -1.55 -1.78 -1.75 -2.18 -1.32 -1.59 -0.67 -0.29 -0.95 -1.36 -1.03 -1.07

R2 3.756% 2.394% 2.278% 3.602% 2.336% 2.14% 3.19% 2.084% 1.886% 3.842% 2.562% 2.332%
Panel B: DUVOL

Model 1 -5.09 -7.02 -8.43 -5.15 -6.88 -7.78 -0.95 -0.27 -0.72 -5.41 -7.61 -8.26
Model 2 -3.23 -3.94 -4.35 -3.36 -3.82 -4.13 -1.1 -1.04 -1.64 -3.96 -4.5 -4.61
Model 3 -2.93 -3.57 -3.88 -3.17 -3.11 -3.61 -1.24 -0.82 -1.5 -3.32 -3.86 -4.13
Model 4 -2.79 -3.37 -3.34 -3.02 -3.1 -3.41 -1.15 -0.55 -1.41 -3.05 -3.5 -3.42
Model 5 -1.77 -2.47 -2.99 -1.91 -2.09 -2.32 -1.23 -1.05 -2.15 -2.74 -2.58 -3.37

R2 2.482% 3.634% 4.65% 2.362% 3.482% 4.36% 2.062% 3.124% 3.856% 2.74% 3.878% 4.736%
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Table 17: Fama and MacBeth (1973) Cross-Sectional Regressions: CRASHi,t:t+T with LPMQ Generated From Different RND-recovery
Methods and Across Multiple Horizons. The results of Fama and MacBeth (1973) cross-sectional regressions of CRASHt,t:t+T across 1-month, 3-month
and 6-month horizons, over the lagged implied LPM from different RND-recovery methods.

Constant GEV SVI CGP
1mo 3mo 6mo 1mo 3mo 6mo 1mo 3mo 6mo 1mo 3mo 6mo

Panel A: NCSKEW
Model 1 -2.23 -5.19 -5.65 -2.38 -5.07 -5.49 -0.65 0.17 -0.29 -1.98 -5.01 -5.29
Model 2 -2.66 -2.98 -2.96 -3.07 -3.44 -3.6 -0.02 0.19 -0.01 -3 -3.38 -3.1
Model 3 -2.5 -2.97 -2.9 -2.51 -2.94 -3.52 -0.41 -0.17 -0.35 -2.42 -2.88 -2.92
Model 4 -2.57 -2.85 -2.5 -2.67 -2.7 -2.9 -0.18 0.02 -0.47 -2.5 -2.73 -2.36
Model 5 -2.73 -2.62 -2.28 -3.2 -1.94 -2.03 -0.1 0.43 -0.16 -2.07 -1.65 -1.25

R2 3.72% 2.494% 2.254% 3.54% 2.376% 2.172% 3.134% 2.152% 1.934% 3.818% 2.598% 2.476%
Panel B: DUVOL

Model 1 -5.13 -7.06 -7.94 -5.71 -7.91 -8.55 -1.79 -1.05 -1.5 -5.9 -7.63 -7.84
Model 2 -3.53 -4.06 -4.34 -3.87 -4.56 -5.05 -1.36 -1.15 -1.48 -4.61 -4.82 -4.68
Model 3 -3.52 -4.09 -4.12 -3.54 -4.24 -4.75 -1.88 -1.41 -1.82 -3.9 -4.36 -4.35
Model 4 -3.4 -3.88 -3.71 -3.46 -3.87 -4.05 -1.71 -1.19 -1.79 -3.58 -3.98 -3.7
Model 5 -2.88 -3.15 -3.46 -2.91 -2.81 -3.26 -1.48 -0.87 -1.75 -2.64 -2.96 -3.38

R2 2.454% 3.708% 4.614% 2.376% 3.534% 4.486% 1.958% 3.17% 3.934% 2.646% 3.978% 4.926%
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Table 18: Descriptive Statistics & Cross-sectional Correlations of Implied Moments From Recovered RND. The descriptive statistics and cross-
sectional correlations of V olQ and SkewQ estimated by using the recovered RND with different recovery methods, based on the monthly sample.

Constant GEV SVI CGP BKM
V olQ SkewQ V olQ SkewQ V olQ SkewQ V olQ SkewQ V olQ SkewQ

Panel A: Descriptive statistics
Mean 0.33 -4.21 0.33 -11.68 0.33 1.36×106 0.35 0.030 0.28 -5.29
Std 0.12 383.23 0.12 586.05 0.13 3.79× 108 0.13 8.69 0.15 511.19

Median 0.30 -2.44 0.31 -4.37 0.30 -2.69 0.33 -0.26 0.25 -1.19
5th Percentile 0.18 -29.49 0.18 -22.20 0.18 -67.80 0.20 -7.68 0.13 -3.29
95th Percentile 0.57 3.34 0.56 1.29 0.57 6.55 0.60 10.39 0.54 1.04

Firm-Month Obs. 73,152 69,683 77,391 61,089 76,845

Panel B: Cross-sectional correlations
Constant 1.0 1.0 0.96 0.00 0.91 0.00 0.88 0.01 0.84 0.01
GEV 1.0 1.0 0.88 0.00 0.88 -0.01 0.80 -0.004
SVI 1.0 1.0 0.82 0.00 0.74 0.00
CGP 1.0 1.0 0.75 0.02
BKM 1.0 1.0
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Table 19: Sharpe Ratio & t-Statistics of The High-Low Portfolios. Economic performance of the High-Low
portfolios of moment-based predictors constructed by different RND-recovery methods.

Constant GEV SVI CGP
SR t-Statistics SR t-Statistics SR t-Statistics SR t-Statistics

SkewQ 0.02 0.29 0.12 1.76 0.05 0.71 0.20 2.9***
∆V olQ 0.00 0.02 -0.023 -0.34 -0.00 -0.07 0.04 0.65
AV ARQ 0.10 1.43 0.10 1.52 0.11 1.61 0.12 1.80*
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Table 20: Fama and MacBeth (1973) Cross-sectional Regressions: Stock Monthly Returns with The Lagged Mt Only. Univariate Fama and
MacBeth (1973) cross-sectional regressions of monthly stock returns over the lagged Mt.

SkewQ ∆V olQ AV ARQ

Constant GEV SVI CGP Constant GEV SVI CGP Constant GEV SVI CGP
Mt 0.000 0.000 0.000 0.001* 0.014 0.000 -0.005 0.021** 3.364* 1.103 0.124 5.328**

(1.02) (1.44) (0.04) (1.97) (0.81) (-0.01) (-0.39) (2.01) (1.72) (1.23) (0.95) (2.50)

α0 0.01*** 0.01*** 0.01*** 0.01*** 0.009*** 0.010*** 0.009*** 0.009*** 0.009*** 0.009*** 0.009*** 0.009***
(2.94) (3.00) (3.10) (2.72) (3.08) (3.23) (2.78) (3.03) (3.00) (2.79) (2.82) (2.81)

Firm-Month Obs. 71,631 68,548 74,307 60,597 48,639 48,639 48,639 48,639 59,626 58,821 60,584 60,282
adj. R2 0.7% 0.4% 0.0% 0.3% 1.2% 1.1% 0.7% 0.8% 1.94% 1.31% 0.71% 3.0%
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Table 21: Fama and MacBeth (1973) Cross-sectional Regressions: Stock Monthly Returns with The Lagged Mt Generated From The CGP-
based RND-recoveryFama and MacBeth (1973) cross-sectional regressions of monthly stock returns over the lagged option-implied predictor Mt constructed
from the CGP-based RND.

SkewQ ∆V olQ AV ARQ

(1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4)
Mt 0.001* 0.001 ** 0.001** 0.001 0.021** 0.019** 0.019* 0.020* 5.328** 5.566*** 5.936*** 5.459***

(1.97) (2.12) (2.34) (1.25) (2.01) (2.18) (1.84) (1.75) (2.50) (3.29) (3.51) (2.91)

α0 0.01*** 0.003 0.005 0.001 0.009*** 0.002 0.004 0.001 0.009*** 0.004 0.006 0.004
(2.72) (0.79) (1.15) (0.23) (3.03) (0.46) (0.73) (0.09) (2.81) (1.29) (1.61) (0.64)

Firm-chara No Yes Yes Yes No Yes Yes Yes No Yes Yes Yes

BKM No No Yes Yes No No Yes Yes No No Yes Yes

Idiosyn No No No Yes No No No Yes No No No Yes
Firm-Month Obs. 60,597 60,442 60,401 50,207 48,639 48,609 48,609 48,609 60,282 60,128 60,090 50,076

adj. R2 0.3% 8.1% 10.4% 12.0% 0.8% 8.6% 11.0% 12.2% 3.0% 9.8% 11.5% 13.1%
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Table 22: Stock-level Predictive OLS Regressions: Stock Return Around EAD with The AV ARQ Innovation. Stock-level OLS regressions of stock’s
cumulative return around EAD over the changes in AV AR estimated from stock’s implied RND in ex-ante. The variable AV AR(−30,−20) and AV AR(−30,−5)
are used to predict the stock return around EAD, ret(−19, 1) and ret(−4, 1), respectively.

Constant GEV SVI CGP
ret(−19, 1) ret(−4, 1) ret(−19, 1) ret(−4, 1) ret(−19, 1) ret(−4, 1) ret(−19, 1) ret(−4, 1)

Panel A: Technology

AAPL 6.0477 9.9047 5.5107 6.6367 -0.9069 1.6402** -40.4151** -8.6537
0.2927 (0.73) (0.35) (0.88) (-0.87) (2.05) (-2.08) (-0.81)

CSCO -27.9290* -10.7046 24.4054** 1.0285 1.8093 1.0429 57.1950** 14.9497
(-1.96) (-0.97) (2.21) (0.15) (1.18) (1.33) (2.45) (0.77)

NVDA -28.7480* 5.2046 3.5595 -13.3027*** -0.4089 1.7725 -28.8055* -7.1988
(-1.79) (0.39) (0.44) (-3.18) (-0.14) (0.87) (-1.70) (-0.46)

EA -14.5192 16.2953 -1.9196 -21.1370 -1.0703 -0.3245 -138.5293* -65.9735
(-0.74) (0.79) (-0.16) (-1.07) (-0.80) (-0.37) (-1.74) (-1.45)

Panel B: Healthcare

ABT 14.0254 16.4094 24.1011** 6.0253 -0.2470 -0.6577 63.0966*** 34.6365**
(1.27) (2.47)** (2.28) (0.88) (-0.25) (-1.05) (3.42) (2.53)

GILD 15.9568 5.1441 20.1782 -41.5540** 2.2453 0.8665 -66.6414* 3.9827
(0.69) (0.33) 0.81 (-2.19) (1.61) (1.00) (-1.74) (0.15)

PFE 35.8608 -0.2810 -19.6735 2.8070 0.5086 -0.4690 -63.8612* -56.7734**
(1.40) (-0.01) (-0.60) (0.17) (0.49) (-0.49) (-1.70) (-2.23)

LH 3.1087 -3.7077 22.2431 10.9793 2.5118* 1.2036 71.9068* 47.7638*
(0.11) (-0.17) (0.91) (0.52) (1.87) (1.18) (1.88) (1.90)
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Table 22 (Cont’d): Stock-level Predictive OLS Regressions: Stock Return Around EAD with The AV ARQ Innovation. Table 11 (Cont’d):
Firm-level OLS regressions of stock’s cumulative return around EAD over the changes in AV AR estimated from stock’s implied RND in ex-ante. The variable
AV AR(−30,−20) and AV AR(−30,−5) are used to predict the stock return around EAD, ret(−19, 1) and ret(−4, 1), respectively.

Constant GEV SVI CGP
ret(−19, 1) ret(−4, 1) ret(−19, 1) ret(−4, 1) ret(−19, 1) ret(−4, 1) ret(−19, 1) ret(−4, 1)

Panel C: Financial

AIG 35.7875*** 30.4688*** -5.2388 -3.7521 4.1450* -1.9666 -135.1817*** -109.4042***
(5.88) (5.62) (-0.31) (-0.38) (1.94) (-0.93) (-5.90) (-5.43)

C -2.3817 6.5626 2.1785 10.3519*** -0.8545 0.6996 -75.3655*** 11.5406
(-0.29) (1.14) (0.52) (3.80) (-0.78) (1.24) (-3.59) (0.86)

CB 3.5973 -22.1985*** 11.0458 -5.5043 0.9135 0.0132 140.1492*** -48.7901***
(0.34) (-3.14) (0.74) (-0.52) (0.66) (0.02) (7.06) (-3.85)

MSCI 8.6096 -14.1011 28.4621* 11.6441 4.7760 3.9019 228.8783** -162.1783*
(0.94) (-0.71) (1.91) (0.38) (0.70) (1.02) (2.68) (-2.10)

Panel D: Industrial

MMM -24.4914 -33.5160** 22.5130 -11.0100 -0.6168 0.0704 86.1972** 13.2952
(-1.09) (-2.58) (0.85) (-0.80) (-0.56) (0.11) (2.21) (0.72)

EMN 9.6860 -1.6533 51.0754** -0.7098 -2.6231 0.3163 -124.3675** -57.5852*
(0.69) (-0.17) (2.11) (-0.05) (-1.01) (0.30) (-2.21) (-1.78)

CTAS 28.5855 -7.3219 -14.0730 -12.0222 6.5470* -0.1897 97.2485*** 65.1856***
(1.50) (-0.53) (-1.23) (-1.57) (1.79) (-0.16) (3.34) (2.88)

UAL -13.8635 0.6806 18.6255 -1.8257 3.5791 -0.2066 126.9446*** 61.5061*
(-0.55) (0.13) (1.21) (-0.21) (1.48) (-0.12) (3.39) (1.71)
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Table 23: Panel Predictive OLS Regressions with Fixed Effects: Stock Return Around EAD with The AV ARQ Innovation. Panel OLS regressions
(with fixed effects) of stock’s cumulative return around EAD over the changes in AV AR estimated from stock’s implied RND in ex-ante. Panel A reports the
result for the full-sample stock data from 1996 to 2022. Panel B reports the result for stock data prior to the 07-08 financial crisis. Panel C reports the result for
stock data after the crisis.

Constant GEV SVI CGP
ret(−19, 1) ret(−4, 1) ret(−19, 1) ret(−4, 1) ret(−19, 1) ret(−4, 1) ret(−19, 1) ret(−4, 1)

Panel A: 1996-2022
AV AR(−30,−20) -0.2768 1.1773*** -0.0103 2.3662**

(-0.54) (2.61) (-0.14) (2.15)
AV AR(−30,−5) 0.0664 -0.6244** 0.0461 1.4534**

(0.18) (-2.01) (0.92) (2.01)
No. Firm-EAD Obs. 26,080 25,731 25,512 25,214 26,538 26,190 26,311 25,979
Panel B: 1996-2007
AV AR(−30,−20) -0.6014 1.3235 -0.1034 2.0841

(-0.29) (1.15) (-0.58) (1.00)
AV AR(−30,−5) 1.3276 -1.2887** 0.1890 0.1421

(1.02) (-2.00) (1.54) (0.10)
No. Firm-EAD Obs. 5,239 5,078 5,134 4,983 5,445 5,276 5,435 5,268
Panel C: 2007-2022
AV AR(−30,−20) -0.2314 1.1332** 0.0273 2.5837**

(-0.44) (2.30) (0.35) (1.97)
AV AR(−30,−5) -0.2636 -0.2911 0.0243 1.9285**

(-0.07) (-0.81) (0.44) (2.25)
No. Firm-EAD Obs. 20,841 20,653 20,378 20,231 21,093 20,914 20,876 20,711
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Figures
Figure 1: The quantile-to-quantile loss of each recovered RND. From the top row to the bottom
row, the sample size level l decreases from 1.0 to 0.05, and from the left column to the right column, the
noise level σ increases from 0.0 to 1.2. The letters a, b, c, d, e, f, g, h, i denote the absolute deviation of the
10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% quantile respectively.

(a) RND quantile loss when the sample size level l is set to 1.0 and 0.5.

(b) RND quantile loss when the sample size level l is set to 0.25 and 0.05.
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Figure 2: The density divergence loss of each recovered RND. From the top row to the bottom row, the
sample size level l decreases from 1.0 to 0.05, and from the left column to the right column, the noise level σ increases
from 0.0 to 1.2. The letters j, k, l,m, n denote the L2, KL, JS, Wasserstein and Hellinger divergence measurement.

(a) RND divergence loss when the sample size level l is set to 1.0 and 0.5.

(b) RND divergence loss when the sample size level l is set to 0.25 and 0.05.
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Figure 3: RND estimation evaluation on slected stocks. We calculate the PIT transform zt according to
Diebold et al. (1997) using the stock options with one-month time-to-maturity and the realized stock returns one
month after the estimation of the stock-level RND. This evaluation is done on the 16 selected stocks for demonstration
purpose. We also compare the RND evaluation across the recovery methods of IVSPL, IVGEV, IVSVI and our
proposed CGP-based technique. Each of the 16 subplots in this figure shows the RND evaluation for one of the
stocks in the selected sample. The first row of each subplot shows the histogram of zt, and the second row shows the
quantile zQt versus the empirical cumulative probabilities zFt of zt. Since zi,t

i.i.d.∼ U(0, 1) if the series of zt is from
a well-specified RND, as supposed in Diebold et al. (1997) and Berkowitz (2001), then the line

(
zQt , zFt

)
should be

close to a 45◦ line if the RND is well-specified. The grey dotted line is the 45◦ line in this figure. We can observe the
obvious departure of

(
zQt , zFt

)
from the 45◦ line on some stocks by using IV-based RND-recovery and the minimum

departures by using our proposed CGP-based RND-recovery.

(a) Technology

(b) Healthcare
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Figure 3 (Cont’d): RND estimation evaluation on real stocks. The panel (a), (b) in the above figure present
the RND evaluation results on selected stocks in the technology and healthcare industry. The panel (c), (d) in the
figure below present the RND evaluation results on selected stocks in the financial and industrial industry.

(c) Financial

(d) Industrial

Figure 4: The comparison of the informativeness of implied tail risk measures across different RND-
recovery methods. The averaged R1 across all stock-level quantile regressions. From left (V aRQ) to right (LPMQ),
more RND information is used, and the measure becomes more sensitive to the accuracy and the shape of the RND.
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Figure 5: The implied skewness portfolios. The cumulative return of High-Low portfolios, sorted on SkewQ

estimated from the recovered RND with different methods.

Figure 6: The implied volatility innovation portfolios. The cumulative return of High-Low portfolios, sorted
on ∆V olQ estimated from the recovered RND with different methods.

Figure 7: The implied asymmetry of variance portfolios. The cumulative return of High-Low portfolios,
sorted on AV ARQ estimated from the recovered RND with different methods.
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